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Abstract

Background: Applying heavy nationwide restrictions is a powerful method to curtail COVID-19 transmission but
poses a significant humanitarian and economic crisis. Thus, it is essential to improve our understanding of COVID-19
transmission, and develop more focused and effective strategies. As human mobility drives transmission, data from
cellphone devices can be utilized to achieve these goals.

Methods: We analyzed aggregated and anonymized mobility data from the cell phone devices of> 3 million users
between February 1, 2020, to May 16, 2020 — in which several movement restrictions were applied and lifted in
Israel. We integrated these mobility patterns into age-, risk- and region-structured transmission model. Calibrated to
coronavirus incidence in 250 regions covering Israel, we evaluated the efficacy and effectiveness in decreasing
morbidity and mortality of applying localized and temporal lockdowns (stay-at-home order).

Results: Poorer regions exhibited lower and slower compliance with the restrictions. Our transmission model
further indicated that individuals from impoverished areas were associated with high transmission rates.
Considering a horizon of 1-3 years, we found that to reduce COVID-19 mortality, school closure has an adverse
effect, while interventions focusing on the elderly are the most efficient. We also found that applying localized and
temporal lockdowns during regional outbreaks reduces the overall mortality and morbidity compared to
nationwide lockdowns. These trends were consistent across vast ranges of epidemiological parameters, and
potential seasonal forcing.

Conclusions: More resources should be devoted to helping impoverished regions. Utilizing cellphone data despite
being anonymized and aggregated can help policymakers worldwide identify hotspots and apply designated
strategies against future COVID-19 outbreaks.
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Background

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) was identified in Wuhan, China, in December
2019. It has since developed into a pandemic wave af-
fecting over 200 countries, causing over 6.9 million cases
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and claiming over 390 thousand lives, as of June 8,
2020 [1]. The rapid growth of the SARS-CoV-2 pan-
demic led to unprecedented control measures on a
global scale. Travel bans, restrictions on mobility of
varying degrees, and nationwide lockdowns have
emerged sharply in over 200 countries [2]. In Israel,
since March 9, 2020, travelers from any country are
being denied entry unless they can prove their ability
to remain under home isolation for 14 days. From
March 16 onward, daycare and schools were shut,
and work was limited to less than a third of the cap-
acity. On March 26, inessential travel was limited to
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100 m away from home, and three separate lockdowns
were applied in most regions in Israel to prevent
crowding due to holiday celebrations [3].

These massive measures have led to a sharp decline in
transmission but pose a significant humanitarian and
economic crisis [4—7]. Recent estimates have suggested
that 1.5-3 month lockdowns will lead to an enormous
economic loss, with high variability across countries ran-
ging between 1.7-13.1% decline in the gross domestic
product [4]. Restrictions to mitigate the outbreak also
led to various types of psychological distress, including
anxiety, helplessness, and depression [5-7]. Further-
more, social isolation is a primary public health concern
in the elderly, as it also amplifies the burden of neuro-
cognitive, mental, cardiovascular, and autoimmune prob-
lems [7]. Thus, given that pandemics rarely affect all
people in a uniform manner [8], it is essential to im-
prove our understanding of the COVID-19 transmission
dynamics to customize control efforts.

As human mobility is an intrinsic property of human
behavior, it serves as a key component of the transmis-
sion of respiratory infections, including COVID-19 [9-
13]. The four billion mobile phones in use worldwide
are ubiquitous sensors of individuals’ locations and can
be utilized not only to track mobility patterns, but also
to understand compliance with ongoing restrictions [12].
The importance of human mobility is further intensified
by the 2.2-11.5 days of incubation, and the observation
that as many as 95% of cases are unreported [14]. Thus,
utilizing real-time data on human mobility is instrumen-
tal for early detection and prompt isolation of COVID-
19 infection.

A variety of factors besides human mobility affect
the risk of infection and manifestations, including
demographics, education, underlying conditions, and
epidemiological characteristics [15]. The high variance
in the severity of the disease for different age groups
suggests that age-based strategies might be useful in
reducing mortality [16]. Age-stratified modeling stud-
ies show that interventions such as school closure can
help delay the outbreak peak [11]. However, this will
not necessarily result in a reduction in the total num-
ber of deaths, particularly in light of the estimated
time for vaccine availability being >1year [17]. In
addition to age, individuals with comorbidities are
2.8-21.4 times more likely to become hospitalized fol-
lowing COVID-19 infection [18]. Another factor may
be socioeconomic status (SES). Impoverished popula-
tions often live in denser regions and have reduced
access to health services, thereby being most vulner-
able during a crisis [8]. The considerably high rate of
household transmission for respiratory infections [19]
may also suggest a higher risk for larger families, re-
gardless of lockdowns.
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We analyzed a large-scale data of location records
from mobile phones to explore the spatiotemporal effect
of human mobility and population behavior on transmis-
sion. We integrated these mobility data into regional
age- and risk-structured transmission model and used
our model to identify efficient and effective strategies for
reducing COVID-19 mortality. Our methodology can
help policymakers worldwide utilize aggregate and anon-
ymized cellphone data to develop designated strategies
against future outbreaks.

Methods

Human mobility

Our data include mobility records based on cellular data
of >3 million users from one of the largest telecommu-
nication companies in Israel. With the exception of chil-
dren < 10years of age, the users are well representative
of Israel demographically, ethnically, and socioeconomi-
cally. In accordance with the General Data Protection
Regulation (GDPR), the data include aggregated and
anonymized information. The data specifies movement
patterns within and between 2630 zones covering Israel,
on an hourly basis, from February 1, 2020, until May 16,
2020. To ensure privacy, if less than 50 individuals were
identified in the zone in a given hour, the number of re-
ported individuals was set to zero.

We determined the location of individuals based on
the triangulation of cell towers, which was found to be
accurate to 300 m in most cases but varied by up to 1
km in less populated areas. To prevent signal noise and
identify stay points, we tracked only locations where
users stayed for at least 15 min within a distance thresh-
old of 1.5km. We defined users as residents of a zone
based on the location at which they had the highest
number of signals on most nights during February 2020.
We define a mobility index (MI) as the daily proportion
of individuals who traveled >1.5km away from their
home. To calculate the MI for each zone, we counted
the daily number of individuals in each group that
showed a signal away from their home location.

Next, we integrated data from the Central Bureau of
Statistics (CBS) that specifies several socioeconomic
characteristics, including population size, household size,
age distribution, socioeconomic score, and dominant re-
ligion, for each zone. Each zone includes ~ 3500 resi-
dents. For each zone, we scaled the number of resident
users of the telecommunication company to match the
actual number of residents in the zone, as reported by
the Israeli CBS. The CBS specifies for each zone a socio-
economic cluster from 1 to 10. Based on these clusters,
we defined three SES groups that were nearly equal in
size: low (clusters 1-3), middle (clusters 4-7), and high
(clusters 8-10). We aggregated the MI according to SES
to test the mobility trends on a national level (Fig. 1a).
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Fig. 1 Mobility patterns with and without restrictions. a Percentage of individuals who traveled > 1.5 km, stratified by socioeconomic groups,
during routine and when mobility restrictions were applied and lifted: (1) closing schools and stores and limiting workplaces to 30% activity; (2)
limiting nonessential travels to 100 m away from home; (3, 4) national daily lockdowns due to Passover; (5) opening stores; (6) lockdown due to
Independence Day; (7) lifting the 100 m limit for nonessential travels. b and (c) Travel patterns based on individuals’ SES during February 2-29 (b)

To evaluate the travel patterns based on an individual’s
SES (Fig. 1b and c), we counted the mean daily number
of travels between the 2630 zones, including for those
individuals who stayed in their origin zone. Grouping by
SES and scaling the daily number of travels to one for
each zone, we created an origin-destination travel prob-
ability matrix.

To analyze the relationship among poverty, mobility,
and transmission (Fig. 2), we divided the data into three
periods: 13 Feb-26 Mar, 27 Mar-19 Apr, and 20 Apr-15
May, corresponding to 1) the early phase before restric-
tions started, 2) the time from restrictions until they
were first lifted, and 3) after the restrictions were lifted.
For each period, we ranked municipalities with a popula-
tion of > 10,000 residents based on the number of new
cases per person observed in each period. For improved
clarity of Fig. 2, we present the 50 most prevalent muni-
cipalities. We calculated for each city the number of

newly reported cases, the SES, and the distribution of
travels to the other 49 municipalities.

Transmission model

We developed a dynamic model for age-, risk- and
region-stratified SARS-CoV-2 infection progression and
transmission in Israel. Our model is a modified suscep-
tible exposed infected recovered (SEIR) compartmental
framework [20], whereby the population is stratified into
health-related compartments, and transitions between
the compartments change over time (Fig. 3a). To model
age-dependent transmission, we stratified the population
into age groups: 0—4 years, 5-9 years, 10—19 years, 20—
29 years, 30-39 years, 40—-49 years, 50—59 years, 60—69
years and >70years. We distinguished high-risk and
low-risk individuals in each age group based on the
ACIP case definition [21, 22]. We also distinguished the
250 regions covering Israel in the model.
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The mean incubation period of SARS-CoV-2 is 6.4 days
(95% CI, 5.6 to 7.7 days) [23, 24], but early evidence shows
that viral shedding occurs during a presymptomatic stage
[25, 26]. Thus, we considered an exposure period E and
an early infectious period I°7°**, Underreporting arises
from asymptomatic cases or mild cases in individuals who
do not seek care. Thus, following the early infectious
phase, individuals in the model transition either to an in-
fectious and reported compartment I"?*"? or to an infec-
tious and unreported compartment 774 [27, 28].

Multiple infections with SARS-CoV-2 are not yet fully
understood. A recent study indicated that there is protect-
ive immunity following infection [29]. This result is con-
sistent with a previous study indicating that for SARS-
CoV-1, memory T cells persist for up to 11 years [30]. In
addition, similar to other respiratory infections, it is likely

that if reinfection occurs, it is less severe and less transmis-
sive [31]. Thus, we assumed that upon recovery, individuals
are fully protected, which is consistent with other SARS-
CoV-2 transmission models [32] (Additional file 1: Supple-
mentary information). Altogether, our model includes 5 =9
%2250 =22,500 compartments (health — compartments =
age — groups = risk — groups = regions).

Force of infection and seasonality
The rate at which individuals transmit depends on (i)
contact mixing patterns between the infected individual
and his or her contact, (ii) age-specific susceptibility to
infection, (iii) region-based behavioral susceptibility, and
(iv) potential seasonal forcing.

Age-specific contact rates were parameterized using
data from an extensive survey of daily contacts [33] and
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data from CBS regarding the household size in each re-
gion. In addition, we utilized the aggregate mobility data
regarding movement patterns within and between 250
regions as observed in the data during routine and fol-
lowing restrictions (Additional file 1: Supplementary in-
formation). We specifically distinguished the contact
patterns of infected individuals for different locations,
namely, at home, at work and during leisure, such that
the number of contacts was based on the extensive sur-
vey [33] and the household size, whereas the mixing pat-
terns were based on the locations of the individuals as

analyzed using the mobile data. These contact data re-
veal frequent mixing between similar age-groups, mod-
erate mixing between children and people their parents’
age, and infrequent mixing among other groups. The
data based on mobility reveal more frequent mixing be-
tween individuals of similar SES, at similar geographical
distances, and with cultural similarities (Additional file
1: Supplementary information).

We distinguished between in-home and out-of-home
transmission. We evaluated the in-home transmission is

independent of age and, based on a previous
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retrospective study, that suggested a value of 0.16 for the
household attack rate [19]. The age-specific susceptibil-
ity rate for out-of-home individuals j8; was parameterized
by calibrating our model with daily COVID-19 records.

To account for behavioral susceptibility, we explicitly
considered in our model a parameter reflecting the order
to maintain physical distancing, k,. The high regional
variations in susceptibility were parameterized based on
fertility rates and socioeconomic characteristics. The fer-
tility rate in Israel correlates with population density,
household size, and SES. Specifically, we computed for
each region the relative change in mobility compared to
routine. Our analysis indicated that for regions of low
SES, the change was lower, which was reflected in our
model by higher susceptibility (Additional file 1: Supple-
mentary information). The use of regional fertility and
relative change in mobility allowed us to refrain from
calibrating the model to an excessive number of un-
known parameters and avoid overfitting.

Seasonal patterns have been observed in common cir-
culating human coronaviruses (HCoVs), mostly causing
infections in humans between December and May in the
Northern Hemisphere [34]. The two HCoVs 229 E and
OC43 show distinct winter seasonality. In addition,
many coronaviruses in animals exhibit a distinct sea-
sonal pattern of incidence in their natural hosts [35].
There is growing evidence that SARS-CoV-2 is also sea-
sonal, with the optimal setting for transmission in Israel
occurring during winter [36]. Thus, we considered in
our base-case seasonal forcing by including general sea-
sonal variation in the susceptibility rate of the model as

0= (14 eo( 29,

in which ¢ is the seasonal offset. This formulation was
previously shown to capture the seasonal variations in
several respiratory infections, including RSV and influ-
enza [31, 37]. We incorporated the possible values of ¢
to reflect peaks from December through February (Add-
itional file 1: Supplementary information).

Model calibration

To empirically estimate unknown epidemiological pa-
rameters (Additional file 1: Table S5), we calibrated our
model to daily age-stratified cases of COVID-19 con-
firmed by PCR tests in 30 subdistricts covering Israel.
The calibration was conducted on a 30-subdistrict level
rather than in the 250 regions to ensure that there were
sufficient time-series data points in each location for
each age-group. The data were reported by the Israeli
Ministry of Health between February and May and in-
cluded daily information for the patients, including age,
residential zone, underlying conditions, and clinical
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outcomes, including hospitalizations and death. To cali-
brate the model, we minimized the mean squared error
(which is also the maximum likelihood estimation as-
suming the error is normally distributed) between the
model projections of reported cases and the daily
COVID-19-confirmed cases data.

Due to the uncertainty regarding the proportion of un-
reported cases, we calibrated our model to different sce-
narios. Specifically, underreporting is affected by testing
policy and testing capabilities for each country, as well
as individuals’ tendency to seek care once clinical symp-
toms appear. Additionally, underreporting is affected by
the severity of the infection, which is associated with age
[18]. Thus, we chose different age-specific estimates for
the proportion of underreporting, ranging from 5.5-14
unreported cases for a single reported case. These
estimates are based on observations from screenings
conducted in unpublished data from Israel and are con-
sistent with data from Denmark, Czechia, Netherlands;
Santa Clara, California [14, 18, 38] (Additional file 1:
Table S1). Due to the uncertainty related to positive pre-
dictive values of serological screenings, we also tested a
scenario of two unreported cases for a single reported
case to confirm the robustness of our findings.

To account for the age variation, we considered the
detailed serological data from Santa Clara [14]. We also
calibrated our model with scenarios assuming different
phases of seasonal peaking between December 21 and
February 21, as well as scenarios with no seasonality.
The final transmission model included five parameters
without constraints imposed from previous data: re-
duced susceptibility due to physical distancing «, and
susceptibility rate based on age groups j: 0-19, 20-39,
40-59, and>60 (Additional file 1: Supplementary
information).

Model simulations

We evaluated the effectiveness of temporal lockdown
strategies in reducing morbidity and mortality by simu-
lating the model for 1 year and 3 years or until disease
elimination. Each strategy considered includes a thresh-
old for activation of a lockdown, and the groups consid-
ered for lockdown were as follows: 1) the entire
population in the region, 2) daycare- and school-age
children between 0 and 19years of age (children), 3)
high-risk groups and individuals > 65 years of age (eld-
erly). Specifically, to model the lockdown strategies, we
defined an indicator for each region as the weekly num-
ber of new-reported cases per 10,000 people. Each week,
we examined whether the indicator exceeds a certain
threshold for each region. If so, a lockdown was acti-
vated for the following week. This process was contin-
ued for 1-3 years.
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We simulated the lockdowns in our model based on
the mobility patterns we observed between March 26
and April 16 during which a stay-home orders were ap-
plied. In this period, school and daycare centers were
closed, and for non-essential workplace only 10% of em-
ployees from private and public sectors were allowed to
work. Individuals were required to stay in a radius of
100 m from their home except for grocery and health-
related shopping. We define the local lockdowns as a
stay home order for individuals living in that specific re-
gion and not to those who travel into the region.

We projected the number of individuals who will die
under each strategy by utilizing detailed information
from the Israeli Ministry of Health (Additional file 1:
Table S2). Specifically, we calculated for each age- and
risk-group the proportion of individuals who died out of
the reported cases. We multiplied these proportions with
the daily model projections of newly reported cases and
summed this product to calculate the total projected
number of deaths. We also accounted for the uncer-
tainty regarding the estimated probabilities. We define
the efficiency of a lockdown strategy as the total number
of deaths averted per total lockdown days. The number
of deaths averted is calculated as the projected number
of deaths with no lockdowns minus the number of
deaths projected when the considered strategy is applied.
The total lockdown days are calculated as the projected
duration of lockdown multiplied by the population’s size
affected by the lockdown.

This approach is in accordance with the standard
mechanism of cost-effectiveness analysis. Specifically,
lockdowns negatively impact individuals’ Quality Ad-
justed Life Years (QALY) by increasing mental and phys-
ical health burden [39, 40]. In addition, solely from the
losses in productivity, 1 week of national lockdown is
equivalent to ~ 35,000 years of loss by World Health
Organization (WHO) criteria for a cost-effective inter-
vention [4, 41]. Thus, we counted the total days of lock-
downs (i.e., number of individuals under lockdowns
multiplied by the lockdown duration) as they correlate
with the lockdowns’” health and economic burden.

Results

Human mobility and poverty

We utilized aggregated and anonymized information
about mobility based on cellular data. The data specifies
movement patterns of >3 million users within and be-
tween 2630 zones covering Israel, on an hourly basis,
from February 1, 2020, to May 16, 2020. This period
corresponds to the period from a month before the
COVID-19 outbreak began in Israel until 16,600 cases
were reported. Each zone includes ~ 3500 residents with
available information regarding several socioeconomic
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characteristics, including household size, age distribu-
tion, mean socioeconomic score, and religion.

During the aforementioned period, the government
applied and lifted several movement restrictions. We de-
fine a mobility index (MI) as the daily proportion of in-
dividuals who traveled >1.5km away from their home.
While a sharp decline in cases has been observed in the
overall population following restrictions, the decline var-
ied considerably among individuals of different SESs.
Specifically, during routine days, the low-SES population
had the lowest MI. Shortly after the restrictions started,
this trend changed, and populations of all SESs had simi-
lar MIs, while during the lockdowns, the high-SES popu-
lation had the lowest MI (Fig. 1a).

Before the COVID-19 outbreak, the population was
highly clustered such that people of a specific SES typic-
ally traveled to zones where the residents matched their
SES and were, therefore, more likely to meet with each
other (Fig. 1b; Additional file 1: Figs. S1 and S2). Like-
wise, people of similar demographic groups, such as
those with the same religious affiliations, typically trav-
eled to zones where the residents matched their group.
These trends further intensified following the restric-
tions (Fig. 1c). Notably, the clustering was not attribut-
able to only the geographical distance, as many high-SES
zones are geographically close to the low-SES zone.

Human mobility and poverty explain transmission

To explore the spatiotemporal effect of human mobility
and poverty on transmission, we calculated the number
of new cases and the amount of travel between zones
observed during three periods: February 13—March 26,
March 27—-April 20, and April 20-May 20 (Fig. 2). These
periods correspond to 1) the early phase before restric-
tions started, 2) between the time of restrictions and
until the restrictions were lifted, and 3) after restrictions
were lifted. Our analysis indicated that during the first
period, the infection was evenly distributed among dif-
ferent SESs. During the second period, 71% of the cases
were residents of zones with a low SES, particularly reli-
gious orthodox Jews. During the third period, 81% of the
cases were residents of low SES, mainly residents of
zones of Israeli Arabs and orthodox Jewish people. We
also identified a high correlation ranging from 79.2—
82.8% (p value< 0.001) with a lag of 12—14 days between
the MI and the disease growth factor, i.e., the number of
new cases daily per active case (Additional file 1: Fig.
S3). This lag includes the incubation period, the time
from symptom onset until a test is conducted, and the
time until the test results arrive.

We integrated the daily mobility data into an age-, re-
gion-, and risk-stratified model for SARS-CoV-2 trans-
mission. Model parameters were calibrated to the
number of new cases daily in 30 subdistricts covering
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Israel. With only five free parameters, the model recapit-
ulated SARS-CoV-2 trends (Fig. 3). For example, the cal-
ibrated model showed that the national SARS-CoV-2
infections peaked during March 17-25 (Fig. 3b) and
yielded age and regional distributions of SARS-CoV-2
consistent with the data (Fig. 3c and d). Our calibration
further indicated that a model ignoring mobility poorly
captured the spatiotemporal dynamics and provided an
overestimation of disease transmission (Additional file 1:
Table S5). Specifically, our tests suggested that models
that do not include the mobility data (p.value< 0.01) and
the regional fertilities (p.value<0.01) were significantly
worse. We also found that a model that accounted for
seasonal forcing yielded a higher, but not significant (p
value< 0.35), likelihood than a model that did not ac-
count for seasonal forcing (Additional file 1: Table S5).

Focused lockdowns reduce morbidity and mortality

As transmission varied considerably among regions, we
projected the number of the total reported cases and
deaths for 1-3 years under local and temporal lockdown
strategies. Specifically, we simulated three strategies trig-
gered by a threshold of daily COVID-19 incidence in
each of the 250 regions. We evaluated the efficiency of
the lockdown strategies, defined as the number of re-
ported cases or deaths averted per lockdown day (Fig. 4;
Additional file 1: Fig. S5). We found that the local strat-
egy of targeting the elderly was substantially more effi-
cient than the national strategy. For example, assuming
one reported case for every six unreported cases (i.e.,1:6
[reported:unreported]), and a lockdown threshold of 5/
10,000 (reported cases/individuals), a strategy targeting
the elderly is 3.3-5.1 times more efficient than a global
strategy in terms of death, and 1.79-1.82 in terms of re-
ported cases after 1 year (Fig. 4a and b). Moreover, the
number of days under local lockdown varies consider-
ably between regions, demonstrating the importance of
differential lockdowns (Additional file 1: Tables S6, S7,
and S8).

We evaluated the effectiveness of each strategy in re-
ducing morbidity and mortality (Fig. 5; Additional file 1:
Fig. S6). We found that a strategy locally targeting the
elderly yielded a lower number of deaths than a strategy
targeting children. For example, assuming one reported
case for every six unreported cases (i.e.,1:6 [reported:un-
reported]) and a lockdown threshold of 5/10,000 (re-
ported cases/individuals), a strategy targeting the high-
risk group resulted in 4736—6122 deaths, while only tar-
geting children resulted in 10,935-13,765 deaths after 1
year (Fig. 5a). In addition, for lockdown thresholds ex-
ceeding 5/10,000 (reported cases/individuals), which
aligns with Israel’s current practice, a strategy locally tar-
geting the elderly either is projected to be the most ef-
fective or is comparable to the most effective strategies
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in reducing mortality. Although comparable on the ef-
fectiveness level, such a policy includes 2.2-5.5 times
fewer individuals under lockdowns (Additional file 1:
Fig. S4). In terms of cases, we found that a local strategy
targeting all age groups is the most effective. For ex-
ample, for the same transmission settings and lockdown
threshold, a local strategy targeting all age groups re-
sulted in 290,155-323,022 reported cases after 1 year
(Fig. 5¢). These trends were consistent across vast ranges
of epidemiological parameters, different plausible ranges
of threshold values, and different seasonal forcing
considerations.

Discussion

Our key findings suggest that COVID-19 infection does
not spread uniformly in the population, and thus, inter-
vention strategies should focus primarily on protecting
elderly and individuals with underlying conditions in re-
gions of outbreaks. Such a strategy can reduce mortality
while enabling daily routine for a vast majority of the
population.

Our results indicate that a local strategy targeting all
age groups is the most effective to reduce reported cases,
while a local strategy targeting individuals at high-risk is
the most efficient. The reason behind this finding is that
due to the lower contact mixing, the contribution of a
recovered elderly on decreasing transmission is lower
than the contribution of a non-elderly recovered [42].

Our work demonstrates that to understand the spatio-
temporal dynamics of transmission, models must ac-
count for mobility as well as behavioral aspects that are
associated with sociodemographic and socioeconomic
factors. In particular, we found that SARS-CoV-2 is
more likely to spread in more impoverished regions and
is affected by human mobility. The intensive interactions
likely led to higher transmission in developed countries
than in developing countries. However, our model sug-
gested that people of low SES are at higher risk due to
poorer compliance and larger household size. Thus, to
contain the COVID-19 outbreak, more resources should
be devoted to helping impoverished regions.

Our results show that mobility patterns highly corre-
lates with disease growth factor. This observation is also
in line with a previous study [43], which underscored
the importance of utilizing cellular data to predict and
control the ongoing pandemic. However, there are sev-
eral limitations to the use of mobility data [44—46].
Cellphones’ mobility data may not capture protective be-
havior such as wearing a mask and maintaining physical
distancing. This observation is crucial to exploring trans-
mission dynamics as it may vary considerably across
subpopulations and change drastically during the pan-
demic. Thus, we denote that our study identifies and
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relies on correlations and associations and does not at-
tempt to assume causality.

Our analyses indicate that localized lockdowns with
incidence thresholds as low as five reported cases in
10,000 individuals are essential to decrease mortality.
This finding underscores the importance of maintain-
ing a high level of testing [47], particularly in regions
with elevated risk of transmission. However, with
such a strategy, at least 2500 total years of lockdowns
(equivalent to a one-day lockdown of 912,500 individ-
uals) are required to prevent a single death. Consider-
ing that 1 day of lockdown is equivalent to a quality
of life value that is ~0.85 times that in a routine day
[48], even local lockdowns should be prudently con-
sidered from a health economic perspective. Thus, fu-
ture modeling studies should also include localized

and temporal massive screening efforts, which result
in more focused quarantines and isolations than
massive control measures.

As in any modeling study, we made several assump-
tions. Nationwide and local lockdowns are powerful, yet
heavy, control measures. Thus, the local strategies tested
in our model should be applied only if containment can-
not be achieved via less drastic measures to the economy
such as the use of contact tracing to break the chains of
infection, requiring the use face masks and educating to
maintain physical distancing. We denote that these mea-
sures were applied in Israel and were taken into consid-
eration in our model indirectly by our calibration
process. Thus, our model suggests the disease cannot be
contained by these measures in the extent they were
implemented.
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We assumed in our model that there is a long-lasting
protective immunity following infection which is consist-
ent with previous human coronavirus types [29, 30, 32].
However, a recent study suggested that people are un-
likely to produce long-lasting protective antibodies
against this virus [49]. If, indeed, a rapid waning is pos-
sible, this highlights the importance to protect the eld-
erly in regions of high outbreaks.

Social contact patterns are a crucial factor in the trans-
mission of COVID-19 and other infectious agents in a
population [31, 50]. We did not consider changes in the
contact patterns due to reported illness, including self-
isolation. The MOH’s epidemiological investigations
suggested that 67% of the reported infections occurred
within the household, and the duration between infec-
tion and the COVID-19 test result is, on average, 10.5
days. Additionally, due to considerably low testing, most

cases are unreported. Thus, the effect of self-isolation
was minimal and was not explicitly modeled. This obser-
vation is in line with a recent study indicating that the
majority of incidences may be attributable to transmis-
sion from a combination of the presymptomatic stage
and asymptomatic infections [51]. Moreover, effective
contact tracing and isolation of individuals on symptoms
onset may prevent the need for lockdowns [52, 53]. Fu-
ture studies can evaluate the effect of these measures to-
gether with local and global lockdowns to effectively
reduce morbidity and mortality.

Our local lockdowns correspond to regions with a
population of ~ 36,000 people. A smaller lockdown may
be more efficient but could not be tested by our model.
Moreover, it might be hard to enforce a true ‘local lock-
down’ as people would travel for non-necessities outside
their region. This travel outside could lead to potentially
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a quicker dissemination of the disease. However, from a
policy perspective, our definition for local lockdown
makes it more feasible. Additionally, with the growing
evidence of a disproportionate risk from COVID-19 to
the elderly [18, 54], focused control measures are likely
to be conducted in retirement homes and facilities with
populated communities at high risk, which we did not
explicitly account for in our model [55]. Although the
transmission dynamics are unlikely to change with such
focused interventions, the overall mortality is expected
to be lower than what we have found.

While there is a debate in the literature regarding the
extent of infectiousness and transmissibility in children
[56], our results highlighted a not less important ques-
tion: to whom do children transmit? Our findings reveal
that children are less likely to transmit to populations at
risk, and thus, a differential lockdown strategy that tar-
gets children may be even harmful.

Conclusion

We showed that using aggregated and anonymized hu-
man mobility data from cellular phones under the Gen-
eral Data Protection Regulation (GDPR) guidelines is a
powerful tool to improve the understanding of transmis-
sion dynamics and to evaluate the effectiveness of con-
trol measures. Our transmission model predicted that
rather than nationwide lockdowns, applying temporal
and localized lockdowns that focus on elderly can sub-
stantially reduce mortality. Such focused measures will
enable a vast majority of the population to maintain a
daily routine.
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