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Abstract

Background: Lymphatic Filariasis (LF), a parasitic nematode infection, poses a huge economic burden to affected
countries. LF endemicity is localized and its prevalence is spatially heterogeneous. In Ghana, there exists differences
in LF prevalence and multiplicity of symptoms in the country’s northern and southern parts. Species distribution
models (SDMs) have been utilized to explore the suite of risk factors that influence the transmission of LF in these
geographically distinct regions.

Methods: Presence-absence records of microfilaria (mf) cases were stratified into northern and southern zones and
used to run SDMs, while climate, socioeconomic, and land cover variables provided explanatory information.
Generalized Linear Model (GLM), Generalized Boosted Model (GBM), Artificial Neural Network (ANN), Surface Range
Envelope (SRE), Multivariate Adaptive Regression Splines (MARS), and Random Forests (RF) algorithms were run for
both study zones and also for the entire country for comparison.

Results: Best model quality was obtained with RF and GBM algorithms with the highest Area under the Curve
(AUC) of 0.98 and 0.95, respectively. The models predicted high suitable environments for LF transmission in the
short grass savanna (northern) and coastal (southern) areas of Ghana. Mainly, land cover and socioeconomic
variables such as proximity to inland water bodies and population density uniquely influenced LF transmission in
the south. At the same time, poor housing was a distinctive risk factor in the north. Precipitation, temperature,
slope, and poverty were common risk factors but with subtle variations in response values, which were confirmed
by the countrywide model.

Conclusions: This study has demonstrated that different variable combinations influence the occurrence of
lymphatic filariasis in northern and southern Ghana. Thus, an understanding of the geographic distinctness in risk
factors is required to inform on the development of area-specific transmission control systems towards LF
elimination in Ghana and internationally.

Keywords: Lymphatic filariasis, Machine learning, Ensemble modelling, Generalised boosted model (GBM), Random
forest (RF), Ecological niche modelling
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Using six ensemble species distribution models, the suite of risk factors of LF
in northern Ghana varied from those in the south. The ones common to the
two study areas had slight differences in their response curves. This may
explain the variability in prevalence, symptoms, and parasite strains in these
two endemic areas.
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Background

Lymphatic filariasis (LF) is one of the neglected tropical
diseases (NTDs), which presents chronic disabling and
disfiguring pathologies with occasional painful attacks
on affected persons [35]. LF is a mosquito-borne infec-
tion caused by filarial nematodes: Wuchereria bancrofti,
Brugia timori, and B. malayi [34]. These worms produce
larvae i.e., microfilariae (mf) - transmitted by mosquitoes
in endemic areas; thus, reducing mf levels is significant
towards LF eradication [18]. It is estimated that over 1.4
million individuals are at risk of infection in 83 endemic
countries [7]. Currently, the mainstay eradication strat-
egies, which include Mass Drug Administration (MDA)
and vector control, have significantly interrupted LF
transmission in many previously endemic settings [13].
While these achievements are commendable, there is the
need to adopt novel approaches, especially in foci, where
LF transmission is ongoing despite several years of
implementing these control strategies.

In Ghana, studies on LF have shown differences in dis-
ease prevalence and multiplicity of symptoms in two
geographically distinct regions, i.e., the northern and
southern parts [23]. The northern regions of the country
exhibit higher prevalence compared to the southern re-
gions, but the middle forest belt is relatively free from
the infection ([23]: [14]). Elsewhere, a study has revealed
some level of genetic variability in parasite strains in the
two endemic areas [9]. Furthermore, Pi-Bansa et al. [32]
identified a vector of very high vectorial capacity specific
to the coastal areas ie., southern Ghana. These varia-
tions in the two regions could be due to different clima-
tological, land cover, and socioeconomic risk factors.

De Souza et al. [10] reported that ecological and cli-
matic variables such as elevations greater than 200 m,
mean daily precipitation between 2.6—-3.8 mm, and mean
daily temperature range between 24.5-26.0 °C, influence
the distribution of Anopheles gambiae, one of the vectors
for LF transmission in Ghana. At the global scale, an-
other study used climatic and environmental variables in
a boosted regression tree (BRT) model to map the trans-
mission limits of LF [6], confirming the influence of geo-
environmental risk factors on vector population and vec-
torial capacity [17, 11].

While these studies present very useful findings, their
spatial scale of analysis obscures some micro-level risk
factors [28], which may be important for designing dis-
ease control strategies, especially in hotspots zones. Ac-
cording to Williams et al. [40], the spatial scale for
analysis should include the known environmental or
geographic limits of the species under study for quality
model predictions. In the West African sub-region, dif-
ferent geographical zones have been documented [11].
The south is characterized by wetlands, while the north
is characterized by drylands and sub-Sahelian climate
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[32]. In Ghana, the northern and the southern regions,
although both highly endemic for W. bancrofti infections
have distinct geographic characteristics (i.e., land cover
and climate). This distinction is likely to influence vector
proliferation and transmission potential differently.

Therefore, to facilitate LF elimination in these two
highly endemic areas, a local understanding of the envir-
onmental, climatic, and socioeconomic factors that drive
transmission is required to review existing control pro-
grammes. In line with this, the present study sought to
map the environmental niches of LF and examine the
behaviour of the diverse risk factors that drive transmis-
sion in Ghana’s northern and southern zones. Since the
prevalence of LF is denoted by the presence or absence
of microfilaria (mf) cases, data on myf survey from senti-
nel and spot-check sites across Ghana were stratified
into the northern zone (NZ) and southern zone (SZ).
These were used to run Species Distribution Models
(SDMs), while climate, socioeconomic and land cover
variables were used as covariates. The analysis was then
performed over the entire country (countrywide (CW))
for comparison.

The remainder of the manuscripts is organized as fol-
lows. First, we evaluated and selected the range of risk
variables influencing the occurrence of LF in the study
zones. Second, six SDMs were selected for the mapping
of environments suitable for LF transmission. Third, we
described and compared the response curves of observed
covariates on the probability of LF occurrence in the NZ
and SZ study zones.

Methods

Study area

The study was conducted in Ghana, as shown in Fig. 1.
However, because LF appears to be localized in northern
and southern Ghana, the study area was subdivided only
to include highly endemic areas in these two zones. To
investigate risk factors in the two highly endemic zones
and how they compare with the result from the entire
country, three zonal analyses were performed: country-
wide (CW), NZ, and SZ. The area considered as the SZ
in this study included districts that lie along the coastal
savannah, tropical rainforest and some portion of
Ghana’s moist semi-deciduous forest region, while the
NZ comprised the Sudan savannah and some part of the
Guinea savannah.

The NZ lies in the dry Guinea Savannah Ecological
zone [32] with a sub-Sahelian climate made up of a wet
and a dry season. The wet season extends from April to
October, with a mean annual rainfall of approximately
1365 mm. Similarly, the dry season is subdivided into
the Harmattan from November to mid-February and the
dry, hot season from mid-February to April. Monthly
temperatures range from 20 °C to 40 °C.
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Fig. 1 Map of Ghana showing the districts included in the two study zones, NZ and SZ shaded in grey. (This map was generated by authors with
ArcGIS V.10.6 software (ESRI, Redlands, CA, USA) and no permissions are required to publish it)
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In contrast, the SZ lies within the high rain forest eco-
logical zone of the West African sub-region, with strands
of mangroves [11] and lots of wetlands. The climate in
this region is tropical, characterized by two distinctive
seasonal rainfalls; a major one between April and June
and a minor one that occurs between September and
October. The relative humidity is generally high, aver-
aging between 75 to 85% in the rainy and 70 to 80% in
the dry seasons. The highest mean temperature is 34 °C,
whereas the lowest is 20 °C.

LF prevalence data

Data on mf cases in Ghana was obtained from published
articles in peer-reviewed journals ([2]: [22]). The data
spanning 2000 to 2014 contained information on the
year samples were collected, the number of years of
MDA, the number of people examined, and the number
of mf positive cases recorded for each study community.
In all, 430 communities were surveyed for LF infections
as part of a transmission assessment survey in Ghana.
Details of this dataset were described by Biritwum et al.
[2]. Spatial locations of these communities were ex-
tracted from multiple sources, including Google Earth
Pro, Open Street Map, directory of cities and towns
(world database), and database of the Ghana National
Identification Authority card registration projects. Fig-
ure 2 shows a map of the spatial distribution of mf cases
in Ghana (Fig. 2a), the NZ (Fig. 2b), and SZ (Fig. 2c).

Geo-environmental and climatological data source

To identify the combination of explanatory variables that
create a suitable environment for the transmission of
lymphatic filariasis, land cover, socioeconomic and cli-
matic predictors were obtained from various remotely-
sensed datasets. Enhanced Vegetation Index (EVI) was
generated from the Moderate Resolution Imaging
Spectro-radiometer (MODIS) satellite image, specifically
MOD13Q1 v006 [30]. This data is generated every 16
days at 250 m spatial resolution.

From the United States Geological Surveys (USGS)
earth explorer project (US [39]), a raster dataset of eleva-
tion produced by the Shuttle Radar Topography Mission
(SRTM) and Slope covariate were derived. Additionally,
Landsat 7 ETM + 1 level 1 at 30 x 30 m resolution of less
than 1% cloud cover was downloaded from the same site
for Land Use/Land Cover (LULC) classification.

To determine rural and mostly poor areas in Ghana,
Night-light emissivity from 2000 to 2014 captured by
the operational linescan system instrument was used as
a proxy [16]. This instrument measures visible and infra-
red radiation emitted at night time. The values range
from 0 to 62, representing undetectable emissivity and
maximum emissivity, respectively. Night-light emissivity
has been shown to correlate with economic development
in subnational regions of developing countries [5]. An-
other socioeconomic variable used was housing preva-
lence with improved drinking water and sanitation,
sufficient living area, and durable construction across
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Fig. 2 mf cases for surveyed communities from 2000 to 2014 (yellow indicates absence and red indicates presence), a) CW, b) NZ and ¢) SZ
Zones. (This map was generated by authors with ArcGIS V.10.6 software (ESRI, Redlands, CA, USA) and no permissions are required to publish it)

sub-Saharan Africa [38]. The prevalence of houses built
with finished materials is higher in urban areas than in
rural areas showing 84 and 34% improvement,
respectively.

Precipitation and temperature variables were down-
loaded from the WorldClim database [41]. This dataset
provides a set of global climate layers obtained by
interpolation of weather station datasets distributed
across the world. Other covariates used in the SDMs
with details on the sources are provided in Table 1. In-
put grids were resampled to a common spatial resolution
of 1km? using bilinear resampling for analysis per-
formed with CW data. In contrast, a finer resolution of
250 m* was used for the NZ and SZ to capture detailed
information [40]. Raster layers were coerced to the same
boundary extent to enable stacking for analysis. Raster
manipulation and processing were undertaken using
raster package in R V.3.5.3 and final map layouts created
with ArcGIS V.10.6 software (ESRI, Redlands, CA, USA).

Variable selection and model development

To identify the optimal suite of covariates to include in
the specie distribution models, the variables were
grouped into three categories; land cover, socioeconomic
and climatic variables [29]. A test for variable collinearity
with the Variance Inflation Factor (VIF) diagnostic
method was adopted within each group. Since there are
no formal criteria for deciding when a VIF is too large, a

generic cutoff value of VIF>10 was used [8]. This ap-
proach reduces any potential collinearity and confound-
ing effects such that for p - 1 independent variables,

1
VIF; = — (1)

where 7 is the coefficient of determination obtained by
fitting a regression model for the ith independent vari-
able on the other p — 2 independent variables. After the
collinearity  check, only Biol (Mean Annual
Temperature) had a collinearity problem.

Variable relative contribution
After strongly correlated variables were removed, the
range of variables influencing the occurrence of mf, were
identified using boosted regression trees (BRT). This
method draws insights and techniques from both statis-
tical and machine learning traditions. The advantage of
this method over the others is its strong predictive per-
formance and consistent identification of relevant vari-
ables and interactions. Here, the probability of mf
occurrence, y =1, in a sampled community with covari-
ates X, is given as p(y = 1| X). This probability models
via a logit function fix) = p(y = 1| x).

Analytically, BRT regularization involves jointly optimiz-
ing the number of trees (nt), learning rate (/r), and tree
complexity (¢c). The optimal number of trees was
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Table 1 Environmental variables used in the SDMs for mf occurrence and their sources

Variable Variable Description Source

Population Population Density WorldPop [26]

Housing Improved Housing The malaria atlas project [38]
DEM Digital elevation model STRM (US [39])

Waterbodies

Proximity to all water bodies and wetlands; swamps and marshes

Slope Derived from elevation

LULC Land use and land cover classes Landsat 7 (US [39])
Bio 1 Annual Mean Temperature WorldClim [41]
Bio 12 Annual Precipitation

Bio17 Precipitation of the direst quarter

Bio 18 Precipitation of Warmest Quarter

Bio 19 Precipitation of Coldest Quarter

NTL Distance to stable night light

MeanDayLST Mean Day Land Surface Temperature MOD11A2 [30]
MaxDayLST Maximum Day Land Surface Temperature

MinDayLST Minimum Day Land Surface Temperature

MeanNightLST Mean Night Land Surface Temperature

MaxNightLST Maximum Night Land Surface Temperature

MinNightLST Minimum Night Land Surface Temperature

EVI Enhanced Vegetation Index MOD13Q1 [30]

estimated by the default 10-fold cross-validation (CV)
method [15]. With a slow enough /r of 0.01, the CV esti-
mates of nt are reliable and close to those from independ-
ent data. To ensure the modelling of possible interactions
between predictors, a tc of 5 was selected. A tc of 1 fits an
additive model, while a zc of 2 fits a model with up to two-
way interactions, and so on [15]. It has been proven that
stochasticity improves model performance, and fractions
in the range of 0-5-0-75 have given best results for pres-
ence—absence responses [15]. Therefore, a bag fraction of
0-75 and an error structure of Bernoulli was used from
here on.

The relative importance of the variables was computed
by measuring the number of times a predictor variable is
selected for splitting, and weighted by the squared improve-
ment to the model as a result of each split, then an average
over all the trees is determined [20]. Expressing in mathem-
atical terms, the relative influence, 1 ; of the input variables

x; for a collection of decision trees {T,}Y", is given by

B=25 B )

where M is the number of iteration. The relative influ-
ence (or contribution) of each variable is scaled so that
the sum adds to 100, with higher numbers indicating a
stronger influence on the response. A threshold of 10%
was set below which a variable is considered to have no

substantial contribution to the model [33]. Variables that
contributed less than 10% in both study zones were EVI,
DEM, maximum night land surface temperature, Biol9,
Biol8, maximum day land surface temperature, LULC,
mean and minimum night land surface temperature. In
addition to the above variables, Biol7, distance to an in-
land water body, population density, and mean day Land
surface temperature also had less than 10% contribution
in the northern zone; whereas improved housing, Biol2,
and minimum night land surface temperature had an in-
significant contribution to the model for the southern
zone.

Model selection

Six model classes i.e., generalized linear models (GLM)
[31], multivariate adaptive regression splines (MARS)
[19], artificial neural networks (ANN) [21], generalized
boosted models (GBM) [15], Random Forests (RF) [4],
and surface range envelope (SRE) [3] were tested using
Biomod2 package in R [36]. Out of these, the Random
Forest and GBM were the best performing models for
this data and were therefore used for modelling and pre-
dicting LF suitable environments. Hundred (100) model
runs for each algorithm was performed iteratively, and
the evaluation values of each run were stored and then
averaged to make the final result more robust. Model
evaluation was performed based on the area under the
receiver operating characteristic (ROC) curve. This



Kwarteng et al. BMC Public Health (2021) 21:230

measures the ability of the final ensemble model to fit
the presence-absence data and predict across unsampled
locations.

Results

Distribution of mf in Ghana

The distribution of mf cases from 430 communities sur-
veyed in Ghana showed that LF infection was mainly
found in the northern, southern and some parts of Gha-
na’s middle belt. The presence points indicated in red in
Fig. 2 showed mf occurred along coastal communities in
southern Ghana (i.e., Western and Central Regions). In
the northern sector, mf cases were widespread in most
of the districts, which also had a very high incidence
compared to southern Ghana.

Model performance

Model performances of six species distribution algo-
rithms for the CW, NZ, and SZ models are shown in
Table 2. Judging by AUC, sensitivity (percentage of pres-
ence correctly predicted), and specificity (percentage of
absence correctly predicted) values, RF and GBM models
outperformed the ANN, SRE, MARS, and GLM. AUC
values between 0.5-0.6 indicate a failed model perform-
ance, whereas 0.6-0.7 represent poor model quality;
0.7-0.8 represent models with fair performance and
0.8-0.9, indicate a good model performance [24]. Over-
all, the RF was of the best quality for the CW model as
well as the NZ and SZ models (Table 2). For further
evaluation, results of the model with AUC=0.8 only
(i.e., RF and GBM) were considered for the ensemble
modelling.

Influence and importance of risk variable in northern and
southern Ghana

Variable importance was evaluated for environmental,
socioeconomic, and climatic variables, as shown in
Table 3. Here, it was observed that in all the two zones
and also in comparison with the countrywide analysis,
distance to stable night light was an important variable
although a weak one for both GBM and RF algorithms:
CW (0.10 and 0.14, respectively), NZ (<0.01 and 0.17,
respectively) and SZ (0.03 and 0.13, respectively). Be-
sides, weak but important values were computed for
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variables such as terrain slope for NZ (0.10 and 0.18)
and SZ (0.04 and 0.10) and improved housing for CW
(0.09 and 0.10) and NZ (0.13 and 0.16) for both algo-
rithms, respectively. On the other hand, while Bio 12
was of the highest importance for both algorithms in
CW (0.43 and 0.31) and NZ (0.63 and 0.36, respectively),
proximity to water bodies was given the highest import-
ance for the same algorithms in SZ (i.e., 0.59 and 0.41,
respectively). Finally, the following variables of varying
importance i.e., fair to weak values, were unique for the
three zones: CW (maximum night land surface
temperature and DEM), NZ (Minimum day land surface
temperature), and SZ (Bio 17, Population density and
Minimum day land surface temperature).

Partial dependence plots of factors associated with mf
transmission

Figures 3 and 4 show the response plot for each covari-
ate for the RF and GBM models run with data from NZ
and SZ, respectively. In northern Ghana, high suitability
for mf was negatively associated with annual precipita-
tion (i.e., rainfall values greater than 1000 mm result in a
decrease in mif occurrence), high terrain slope, longer
distance to the stable night light and minimum day land
surface temperature values above 23 °C. There was a
general increase of mf in areas with less housing im-
provement in northern Ghana and appeared to decrease
in areas with greater than 30% improved housing
(Fig. 3g).

High suitability values were associated with distance to
water bodies and low suitability values associated with
terrain slope in the south. It was observed that proximity
to water bodies, population density, mean day land sur-
face temperature showed a negative correlation with mf
occurrence. In contrast, the increase in terrain slope and
increased distance to stable night light showed a positive
correlation with mf occurrence, as shown in Fig. 4. Re-
sponse plot for CW (Fig. 5) showed consistency in the
occurrence of mf with some similar covariates observed
in the NZ and SZ, such as precipitation and distance to
stable night light. The effect of the type of housing is
better observed in the CW zone as mf occurrence de-
creased in areas with higher improvement in housing.

Table 2 Calculated AUC, sensitivity and specificity values of different SDM algorithms for mf occurrence in CW, NZ and SZ

Model AUCCW Sensitivity CW  Specificity CW AUC NZ Sensitivity NZ  Specificity NZ AUC SZ  Sensitivity SZ  Specificity SZ
GBM 0.95 92.23 86.91 0.94 91.00 91.00 091 86.5 88.03

RF 097 94.99 93.64 0.98 95,51 95.55 0.95 925 97.04

GLM 0.83 88.55 71.55 0.84 79.63 82.81 0.82 724 87.35

ANN 0.82 84.61 73.27 0.71 86.38 52.16 0.79 64.95 89.36

SRE 0.67 76.57 58.12 0.64 7.74 512 044 97 3.08

MARS 087 84.73 80.82 0.82 80.22 77.72 0.77 61.8 91.73
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Table 3 Variables used in SDMs and difference in variable importance for the CW, NZ and SZ. The highest variable importance value

for each model is highlighted with bold and underlined numbers

Variables GBM CW RF CW GBM Nz RF NZ GBM SZ RF SZ
bio17 - - - - 0.04 0.10
bio12 043 0.31 0.63 0.36 - -

NTL 0.10 0.14 <001 0.17 0.03 0.13
Population - - - - 0.25 0.13
Slope - - 0.10 0.18 0.04 0.10
DEM 0.21 0.17 - - - -
Proximity to Waterbodies 0.10 0.19 - - 0.59 0.41
Improved Housing 0.09 0.10 0.13 0.16 - -

Mean Day Land Surface Temperature - -
Minimum Day Land Surface Temperature - -

Maximum Night Land Surface Temperature 0.06 0.06

- - 0.04 0.13
0.1 0.13 - -

Probability maps of LF occurrence

The map for the CW zone shown in Fig. 6a represents
discrimination of suitable and non- suitable environment
for LF transmission over Ghana. Probability maps of
CW, NZ, and SZ, shown in Figs. 6 and 7, highlight areas
with zero or little occurrence probability (< 0.5) in large
forest regions of Ghana. The maps as shown in Figs. 6a
and 7a suggest that a larger portion of northwestern
Ghana is environmentally suitable and better able to
drive mf transmission. Areas of LF occurence rather
shrinks sharply towards the northeastern part of Ghana
showing high suitability in the extreme northern part of
the country. Figure 6b exaggerates the coastline for
cartographic purposes and suitable areas mirrored the
SZ output as shown in Fig. 7b. These areas mainly cor-
respond to mangrove ecosystems and freshwater swamps
in the southern parts of the country.

Discussion

Despite several years of mass drug administration and
vector control measures against human lymphatic filaria-
sis in Ghana, some areas continue to serve as hotspots
for its transmission. LF occurrence in Ghana appears to
vary from one location to another. In Ghana, two major
endemic zones are known for LF, ie., northern and
southern zones. The mid-section has only a few cases of
mf believed to have been imported from the north [23].
Understanding the differences in risk factors, i.e. envir-
onmental, climatic and socioeconomic covariates that
drive mf transmission in the two study zones, is key to
providing appropriate elimination strategies.

In this study, the evaluation of model performances re-
vealed that RF and GBM algorithms performed better
for all three zonal mf datasets. The two models in the
current study showed that the AUC of success rate
ranged from 0.95 to 0.98 and 0.91 to 0.95 for RF and
GBM, respectively. This may be attributed to the fact

that RF and GBM are better able to handle large covari-
ates [37], as provided in this study.

The probability of mf occurrence is influenced by dif-
ferent combinations of variables in northern and south-
ern Ghana. In the north, the occurrence of mf was
influenced by low values of annual precipitation but de-
creased with high values above 1000 mm. The precipita-
tion variable behaved differently in southern Ghana,
with precipitation of the driest quarter sustaining LF
transmission. In Ghana, heavy rainfall from April to June
usually results in flooding in the northern region [27]. In
the south, high rainfall patterns and low elevation, par-
ticularly along the coast, may result in surface water
run-offs. These occurrences may sweep away breeding
habitats reducing the survival of LF vector and subse-
quent transmission. However, rain availability especially
in the coastal areas during the driest period of the year
from late December to March, can create pockets of
stagnant water bodies to sustain mosquito breeding,
therefore increasing LF transmission. This implies that,
whereas rainfall is needed for vector breeding, excessive
rainfall could potentially result in flooding and sweeping
away breeding sites [12]. Findings from this study are
consistent with previous studies by Abiodun et al. [1],
Cano et al. [6] and Eneanya et al. [17].

Similarly, the occurrence of mf declined with high land
surface temperature during the day. This is consistent
with adult mosquito survival and larval development,
which suggests that both adult and larvae are unable to
survive at high temperatures [25]. The response curve
shows that minimum day land surface temperature
values between 23 °C to 24.5°C (GBM and RF, respect-
ively) may increase the mortality rate of either larvae or
adult mosquitoes in the north. Comparatively, vector
survival is supported in the south beyond these
temperature ranges until temperatures between 27 °C to
29°C. This may result from thick vegetation cover or
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Fig. 3 Response Curves of retained variables in the northern zone (NZ). The graphs were created for the RF and GBM species distribution models.
(Plots were created by authors with RStudio Version 3.5.3 and no permissions are required to publish it)
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tree canopy in southern Ghana, which may create suit-
able conditions likely to sustain vector survival even at
high temperatures. It was also observed that the prob-
ability of mf occurrence decreased with increasing ter-
rain slope in both areas. This finding confirms with
studies by Eneanya et al. [17]. What accounts for such
observation is that steeper surfaces could lead to faster
surface water run-off, thus decreasing water collection in
pockets and eventually reducing breeding sites for vec-
tors associated with LF transmission. In addition to pov-
erty, areas of poor housing support transmission in the
north.

Distance to stable night light was an important co-
variate for both northern and southern Ghana as well
as at the countrywide scale. The response curve in
the north shows that suitable areas for mf occurrence
were generally rural and poor communities. In the
south, some communities located in peri-urban to
urban communities had a high probability of mf oc-

currence. This is true because some coastal

communities located in peri-urban areas in the West-
ern region have high mf prevalence.

Although some areas of the two the study zones (north
and south) were suitable for mf occurrence, there exists
slight differences in the suite of risk factors. This implies
that any effort or strategy intended to eliminate the dis-
ease should consider unique conditions prevailing at a
relatively fine spatial scale. The major limitation of the
study was that the models did not consider important
demographic risk factors at the community or individual
level that are likely to improve the predictions. Finally, a
larger sample size could lead to more precise
predictions.

Conclusion

This study has demonstrated that different variable com-
binations influence the occurrence of lymphatic filariasis
in northern and southern Ghana. For both zones, the
disease is highly prevalent in poor rural communities in
low lying areas. In northern Ghana, areas suitable for
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transmission are relatively warm, low lying rural com-
munities with poor housing, especially those character-
ized by mud houses. Besides, mean annual precipitation
between 900 mm to 1000 mm provides a conducive en-
vironment for LF transmission. Similarly, rural, poor,
low-lying, and most coastal communities in the south
present a suitable environment for LF transmission.
However, some peri-urban areas along the coast were
also observed to be suitable areas. Generally, the infec-
tion is efficiently transmitted in warm lowland commu-
nities within 2km of inland water bodies such as
mangroves, lagoons, and rivers in the south. Moreover,
rainfall within the relatively warm part of the year was
identified as an important risk factor as it may contrib-
ute to the formation of stagnant water bodies suitable
for mosquito breeding. Interventions such as improve-
ments in housing and sanitary conditions may reduce LF
transmission in endemic areas. The findings of the
present study can be utilized by policymakers in advan-
cing evidence-based strategies to eliminate LF.
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