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Abstract

Background: Evidence for the impact of the food retailing environment on food-related and obesity outcomes
remains equivocal, but only a few studies have attempted to identify sub-populations for whom this relationship
might be stronger than others. Genetic polymorphisms related to dopamine signalling have been associated with
differences in responses to rewards such as food and may be candidate markers to identify such sub-populations.
This study sought to investigate whether genetic variation of the dopamine D4 receptor gene (DRD4 exon Il 48 bp
VNTR polymorphism) moderated the association between local exposure to food retailers on BMI and diet in a
sample of 4 to12-year-old children.

Methods: Data collected from a birth cohort and a community cross-sectional study conducted in Montreal,
Canada, were combined to provide DRD4 VNTR polymorphism data in terms of presence of the 7-repeat allele
(DRD4-7R) for 322 children aged between 4 and 12 (M (SD): 6.8(2.8) y). Outcomes were Body Mass Index (BMI) for
age and energy density derived from a Food Frequency Questionnaire. Food environment was expressed as the
proportion of local food retailers classified as healthful within 3 km of participants’ residence. Linear regression
models adjusted for age, sex, income, cohort, and geographic clustering were used to test gene*environment
interactions.

Results: A significant gene*food environment interaction was found for energy density with results indicating that
DRD4-7R carriers had more energy dense diets than non-carriers, with this effect being more pronounced in
children living in areas with proportionally more unhealthy food retailers. No evidence of main or interactive effects
of DRD4 VNTR and food environment was found for BMI.

Conclusions: Results of the present study suggest that a genetic marker related to dopamine pathways can
identify children with potentially greater responsiveness to unhealthy local food environment. Future studies should
investigate additional elements of the food environment and test whether results hold across different populations.
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Background

Major global shifts in the quantity and quality of
food available through our food supply have been
linked to the increasing trends in obesity worldwide
[1]. Variations in food supply at the neighbourhood
level and their link to disparities in nutrition and
nutrition-related outcomes have also been extensively
investigated. The evidence emerging from this body
of work has however failed to provide strong evi-
dence supporting the impact of the neighbourhood
food environment on food behaviour and related
cardio-metabolic risk factors, with many studies
reporting null or counter-intuitive findings [2-4].
Although the equivocal evidence could be explained
by methodological limitations and heterogeneity in
studies [2, 5-7], results could also reflect the fact
that the local food environment does influence some
people, but not all. This idea is consistent with calls
for moving away from dichotomous understanding of
neighbourhood effects in terms of whether or not
they do matter to understanding of how and for
whom they matter [8, 9].

While neuroscience studies have assessed how individ-
uals respond to various food cues in controlled experi-
mental settings [10-12], such work has been sparsely
conducted in naturalistic settings. Exceptions include a
study in which food consumption in children with a
greater predisposition to external eating (eating in
response to external cues) was found to be more
strongly related to exposure to vegetable and soft drink
displays compared to children with lower external eating
[13]. Another example is a study showing that neigh-
bourhood exposure to fast-food restaurants was a stron-
ger predictor of the frequency of visits to fast food
retailers in adults considered to be more reward-
sensitive [14]. Another study found that an inverse asso-
ciation between one’s sense of mastery, a construct of
perceived control over one’s circumstances, and risk for
metabolic syndrome, was more pronounced for individ-
uals living in areas with greater exposure to fast-food
restaurants [15].

Further insights into individual differences in
responses to food environment can be gained by looking
into the neurobiology of behavioural responses to envir-
onmental cues. From a neurobehavioural perspective,
environmental reactivity results from the interaction be-
tween the characteristics or traits of individuals and the
valence and strength of the environmental stimulus they
are exposed to [16]. With respect to neurobiological
traits, main candidates include genetic and brain
markers of the dopamine neurotransmitter systems,
which is responsible for modulating the functioning of
neural circuitry at any time, and in any environmental
context, with complementary role played by the
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serotonin system [17]. Dopaminergic neurons are espe-
cially important at encoding motivational value and sup-
porting brain networks for orienting, cognition, and
general motivation [17]. It is recognised that the dopa-
mine system plays an important role in the rewarding
processes underlying food intake [18, 19] and if compro-
mised, can lead to food addiction and obesity [20]. Poly-
morphisms in genes that significantly affect dopamine
neurotransmission are therefore potential candidate gen-
etic markers for food environment responsiveness. In
particular, the dopamine D4 receptor gene (DRD4) func-
tionally produces inhibitory effects, and is expressed in
brain regions related to planning and regulating execu-
tive functions and rewards [21]. The most frequently
studied D4 polymorphisms is the 48-bp variable number
of tandem repeats (VNTR) on the exon 3 of the DRD4
gene, which is repeated from 2 to 11 times, with the 7-
repeat allele being associated with altered function of
the receptor relative to the more common 4-repeat allele
[22]. The 7-repeat (7R) allele is associated with a lower
affinity for dopamine and thus, reduced inhibitory effects
on postsynaptic neurons [23-25], leading to increased
sensitivity to both aversive and rewarding cues. Children
who are carriers of this allele have also been found to
have less healthy food consumption patterns compared
to non-carriers [22, 26].

The vulnerability to adverse or unhealthy environ-
ments described above, also known as the diathesis-
stress view, represents only one side of variation in
responsiveness to environment. It has been suggested
that differences in dopaminergic pathway could lead
individuals to respond more intensely to not only
adverse (e.g. obesogenic) conditions, but also support-
ive (health-promoting) environments [27], translating
into the well-established “for-better—and-for-worse”
pattern of susceptibility [28]. This hypothesis known
as the differential susceptibility hypothesis [16, 29]
suggests that individual variations in the magnitude of
biological responses regulate openness or susceptibil-
ity to environmental influences, ranging from particu-
larly harmful to favourable environments [29].

The DRD4-7R VNTR occupies a central place among
genetic polymorphisms associated with differential sus-
ceptibility and other forms of behavioural plasticity [27].
For instance, evidence of differential susceptibility has
been reported for cognitive and socio-emotional child
development outcomes of family conditions [21], sensi-
tivity to depression and associated intervention [30, 31],
as well as sensitivity to cultural norms [32, 33]. As early
evidence supporting the possibility of differential suscep-
tibility in the domain of obesity and other diet-related
health problems, Silveira and colleagues [34] found that
children who were carriers of the DRD4-7R VNTR and
raised under adverse low-socioeconomic status (SES),
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showed a stronger preference for fat compared to the
control non-carriers group. On the other hand, DRD4-
7R VNTR carriers raised in high-SES conditions
reported lower preference for fatty foods compared to
the non-carriers, supporting a “for better and for worse”
pattern. A recent study also provided evidence for differ-
ential susceptibility to emotional eating in response to a
positive postnatal environment according to a predicted
gene expression of the prefrontal DRD4 gene [35].

Although socio-economic conditions and disadvan-
tage have been linked to obesogenic qualities of the
food environment [36], the above studies did not inves-
tigate directly the food environment. The present study
was designed to explicitly investigate whether the asso-
ciation between a measure of adverse (obesogenic) vs.
healthy food environment and dietary behaviour and
obesity vary by DRD4-7R VNTR status in children and
if so, whether differences in pattern of responsiveness
are consistent with the diathesis-stress or the differen-
tial susceptibility hypotheses.

Methods

Data for this study were obtained from two studies. The
first study is the Brain-to-Society (BtS) diagnostic
research project, a cross-sectional study conducted in
2013 examining a range of individual, household, and
environmental risk factors for childhood obesity in 6—12
year children living in Montreal, Canada. The second
study is the Maternal Adversity, Vulnerability and Neu-
rodevelopment (MAVAN) birth cohort which recruited
pregnant women from obstetric clinics in hospitals
located in Montréal, Québec and Hamilton, Ontario
from 2003 onwards, with the present study only using
data from the Montreal cohort and assessments made
when children were 4 years old.

BtS recruitment and data collection

Recruitment for the BtS study was conducted by an
independent research firm from an existing database of
households known to (1) live in the Montreal Metropol-
itan area, (2) likely have children in the target age group
(6-12y), and (3) have expressed a willingness to partici-
pate in academic research. From this database, 4947
households were randomly selected and contacted by
phone. Contacted individuals asked about their willing-
ness to complete a survey about children’s eating and
lifestyle habits. Eligibility was confirmed eligibility for
1149 individuals, of those 616 completed the interviews.
The response rate was estimated at 23% using a formula
that allows for the potential eligibility of a proportion of
respondents with unknown eligibility. Each participating
household answered questions for one eligible child. If
more than one child was eligible, the child with the next
birthday was selected. Questions regarding the selected
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child were answered by parent/guardian with the best
knowledge of the child’s daily habits. Interviews were
conducted between March and August 2013 and had a
duration of 50 min. Verbal consent was obtained from
all participants prior to starting the phone survey and a
written consent for follow-up data collections. Ethical
approval covering all aspects of the research was
obtained from McGill University’s Institutional Research
Board.

Participants who completed the interview were invited
to complete a self-administered questionnaire, which
included a link to a validated web-based Food-
Frequency Questionnaire (FFQ) [37]. Participants
received questionnaires and consent (parent) and assent
(child) forms by mail and returned them upon comple-
tion using a pre-paid envelope.

The FFQ asked participants to recall their children’s
food intake over the last month based on a list of 136
individual food items or food clusters covering eight
food and beverages categories including dairy products,
vegetables, fruits, meat and alternatives, beverages, cereal
and grain products, other foods, and supplements. Par-
ticipants were asked to report the frequency of con-
sumption of each food item on a 8- or 9-point scale
from “never” to “four or more times per day” using por-
tion sizes estimated using digital photographs of the
food in standardized dinnerware and utensils based on
the SU. VI. MAX food atlas [38]. The Nutrition Data
System for Research [39] and the Canadian Nutrient file
[40, 41] were used to calculate the energy content (calo-
ries) and the nutrient intake. Height and weight were
reported by parents. At the end of the initial telephone
survey, parents/guardians were asked if they would
participate in a genetic sub-study by providing a saliva
sample from the child and/or completing a mailed (or
on-line) follow-up questionnaire. The kit was mailed to
the families with written instructions on how to col-
lect the sample, and then returned using a pre-paid
envelope for DNA extraction at the Centre for Addic-
tion and Mental Health Neurogenetics Laboratory
(CAMH, University of Toronto).

MAVAN recruitment and data collection

MAVAN recruitment was conducted in obstetric clinics
in hospitals where mothers were invited from mid-
pregnancy. Inclusion criteria included being 18 years of
age or older, and fluent in either English or French.
Exclusion criteria included serious obstetric complica-
tions during the pregnancy or delivery of the child,
extreme low birth weight, prematurity (<37 weeks’ gesta-
tion), or any congenital diseases. Dyads of mothers and
their offspring were assessed longitudinally at home and
in the laboratory across the child’s development (3, 6,
12, 18, 24, 36, 48, 60 and 72 months); however, this
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study is using data collected at 48 months of age, a time
point when the FFQ was administered. The project re-
ceived approvals from obstetricians from study hospitals,
ethics committees and university affiliates. All partici-
pants provided informed consent. For more information
on MAVAN methodology and measures, see [42].

The 48-month assessment, involved a number of labora-
tory assessments about the children, including food-
related measures and height and weight measures. Stand-
ing height was measured to the nearest 0.1 cm without
shoes with a stadiometer (PE-AIM-101;Perspective Enter-
prises) and body weight was measured in light clothing to
the nearest 0.1 kg with a digital floor scale Tanita. Mothers
completed FFQs valid for the local population [43] for
their child, while the child performed behavioural tasks
and measurements. Mothers were asked to report their
child’s intake of various foods on a typical day in the last
week, with the aid of a food and measures photo album to
estimate the portion size of each food [44]. Total caloric
and macronutrient intake was calculated using the Nutri-
Base software (version NB7; CyberSoft Inc). Saliva samples
were collected for genotyping.

Outcome measures

Were (1) body mass index for age and sex calculated
from parent-reported or directly measured children’s
height and weight, in z-scores according to WHO
growth standards (WHO, 2006), which was available for
544 children across the two samples; (2) eating behav-
iour as indexed by energy density calculated as the ratio
of the total energy intake (in kcal) to the total daily
weight of food and beverages consumed (g). These mea-
sures were selected to reflect the expected behavioural
and physiological impacts of food environments promot-
ing high-fat, high-sugar food choices. In addition, given
that the study focused on genetic variability in responses
to palatable food, we selected energy density as our be-
havioural measure due to its established correlation with
the palatability and rewarding value of food [45, 46].

Genotyping

For both samples, genomic DNA was extracted using a
high-capacity membrane-based column (QuickGene810,
AutoGen, Inc., Holliston, MA) and was quantitated
using an A260/A280 ratio with a NanoDrop spectropho-
tometer (ThermoScientific, Inc., Wilmington, DE) and
agarose gel electrophoresis. The DRD4 VNTR poly-
morphism was amplified, with 0.2 uM of DRD4 forward
primer 5'-GCGACTACGTGGTCTACTCG and 0.2 uM
of DRD4 reverse primer 5-AGGACCCTCATGGCCT
TG [47], using the Roche GC-Rich PCR System amplifi-
cation buffer (Roche Applied Science, Inc., Mannheim,
Germany) and 20 ng of genomic DNA in a volume of
25pul. A Stratagene thermocycler (Life Technologies,
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Inc., Grand Island, NY) was used to heat the samples at
95°C for 3 min, then cycled 40 times at 95°C for 20s,
57 °C for 20's, and 72 °C for 1 min, followed by 72 °C for
3 min. Polymerase chain reaction products were sepa-
rated and visualized on a 2% agarose gel (type 1-A,
Sigma, St. Louis, MO) stained with ethidium bromide
(Lichter, Barr et al. 1993). DNA genotyping was per-
formed blind to the children’s behaviour and phenotype.

Characterization of individually unique food environment
Individual local food retailing environment was mea-
sured using the modified Retail Food Environment Index
(mRFEI)), which represents the proportion of local food
retailers classified as healthful and was originally devel-
oped by the Centers for Disease Control and Prevention
(CDC) [48]. We selected a relative measure of the retail
food environment index over an absolute measure of
availability of specific types of food stores in light of evi-
dence that such indices are more robustly related to
health outcomes than absolute availability measures [2].
Local food retailers included were supermarkets, grocery
stores, fruit and vegetable stores, supercentres, conveni-
ence stores and fast-food restaurants located within 3
km of participants’ residence. As per previous the CDC
definition [48], the following retailers were categorised
as providing healthy food: supermarkets, grocery stores,
fruit and vegetable stores, supercentres. The mRFEI was
computed as the number of healthy food retailers over
the total number of local food retailers using kernel
density estimates allowing weighing retailers based on
their proximity to the participant’s residence.

Analyses

The Hardy-Weinberg equilibrium of the DRD4-7R vari-
ant was assessed using a Chi-square test with one degree
of freedom. Generalized linear models accounting for
spatial clustering by Census Tract through the use of
Generalised Estimating Equations (GEE) estimation were
used to separately model each outcome measured as a
function of mRFEIL, genotype, and their interaction. Ana-
lyses were conducted on the maximal available sample.
Models were estimated using the GENMOD Procedure
in SAS 9.4 (SAS Institute Inc., Cary, NC, USA). All ana-
lyses were adjusted for children’s age (in years), cohort
(BtS or MAVAN), sex, and household income above or
below a low-income cut-off. Low income cut-offs used
in the BtS study was 45,000 CAD, which was the closest
cut-off value to the low-income cut-offs (before tax) for
4-person households in large communities (>500,000
population) when the data were collected in 2013 (44,
340%). For MAVAN, low income cut-offs were based on
Statistics Canada Low-Income Cut-offs Index (LICO)
[49]. Ethnicity was not available in the BtS sample and
was therefore not included in analyses. Statistical
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significance was set at alpha = 0.05. Probing and testing
of measures to dissociate differential susceptibility from
diathesis-stress were informed by approaches proposed
by Roisman and colleagues [50] and Widaman and col-
leagues [51] and conducted using an online calculator
[52]. These measures are described in Additional file 1.

Results

Sample description

Genetic information was available for 322 participants,
of those 305 had food environment data and 300 also
had household income information. Of those, BMI and
energy density data were available for 279 and 230 par-
ticipants, respectively. Descriptive characteristics for par-
ticipants included in the BMI analytical sample, from
both cohorts are presented in Table 1. The distribution
of the DRD4-7R VNTR allele was in Hardy-Weinberg
equilibrium (Chi-square = 0.0006, p =0.98) in the sam-
ple. Both samples were similar in terms of sex represen-
tation, genotype, outcomes, and food environment
measure. MAVAN cohort participants were younger, as
expected, and had a higher prevalence of low income.
No differences were found in mRFEI based on DRD4 7R
VNTR status (p > 0.8).

Gene*food environment results

Main and interactive effects of DRD4-7R VNTR status
and the food environment index on energy density and
zBMI are provided in Table 2. Results for energy dens-
ity revealed main effects of DRD4-7R VNTR, with the
presence of the DRD4-7R VNTR being associated with
greater energy density. No main effect of the food
environment was found for either outcome. A statisti-
cally significant interaction effect was found between
genotyping and the mRFEI measure on energy density,
which suggested that there was an inverse association
between mRFEI and energy density for DRD4-7R
VNTR carriers only. Results for zBMI suggest no
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significant main or interactive effects of DRD4-7R
VNTR and food environment measures.

We explored the nature of the interaction found
between mRFEI and DRD4-7R VNTR for energy density
using probing and measures allowing to assess whether
the interaction was consistent with the differential sus-
ceptibility or diathesis-stress hypothesis as described
elsewhere [50, 51] and in Additional file 1. To do so, we
first tested the assumption of linearity of relationships as
suggested by Widaman and colleagues [51] by testing for
quadratic and cubic terms for centred values of mRFEI
within each DRD4-7R VNTR status group. None of the
non-linear terms were statistically significant (P’s > 0.5).
The cross-over point, that is, the value of the mRFEI
where the regression lines for DRD4-7R VNTR carriers
and non-carriers cross, was computed and the propor-
tion of the sample with values of mRFEI above the
cross-over point was estimated at 14.5%, suggesting that
the cross-over point occurred at the higher end (ie.
healthier end) of the mRFEI range observed. This meas-
ure, known as the Proportion Affected (PA) index repre-
sents an estimate of the proportion of the population
that is differentially affected by the moderator (DRD4 7R
VNTR), with values closer to 0.5 considered to provide
support for the differential susceptibility hypothesis
whereas values closer to 0 considered to be more con-
sistent with the diathesis-stress hypothesis (Roisman,
Newman [50]).

The cross-over point at high values of mRFEI was con-
firmed by plotting and probing the relationship between
mRFEI and energy density for DRD4-7R VNTR carriers
and non-carriers (Fig. 1). This analysis also confirmed
that an inverse association between mRFEI and energy
density was only present for DRD4-7R VNTR carriers,
as shown in the figure. The figure also illustrates in grey
the values of mRFEI for which there was a statistically
significant difference in energy density according to
DRD4-7R VNTR status, which suggests that differences
were only present for relatively less healthy food

Table 1 Participant characteristics included in both analytic samples by study (BtS/MAVAN) and combined

BMI sample Energy density sample

BtS (n= MAVAN (n= Combined (n= BtS (n= MAVAN (n= Combined (n=

159) 120) 279) 135) 95) 230)
Age (years) (Mean (SD)) 89(1.7) 40 (0.0) 6.8 (2.8) 8.87 (1.73) 40 (0.0) 6.9 (2.7)
Sex (n(%) male) 73 (45.9%) 1 (50.8%) 134 (48.0%) 1 (45.2%) 44 (46.3%) 105 (45.6%)
DRD4-7R VNTR carriers (n(%)) 55 (34.6%) 43 (35.8%) 98 (35.1%) 47 (34.8%) 34 (35.8%) 81 (35.2%)
BMI-for-age z-score® (Mean (SD)) 047 (1.77) 0.38 (0.94) 043 (1.47) 047 (1.73) 0.33 (0.88) 041 (1.47)
(ESnDe)r)gy density (kcal/g) ® (Mean 4.60 (0.25) 4.50 (0.86) 4.56 (0.60) 4.60 (0.25) 4.52 (0.87) 4.56 (0.59)
mRFEl (Mean (SD)) 2384 (11.91) 25.85 (10.95) 24.70 (11.53) 24.19 (1259) 2491 (11.13) 2449 (11.98)
Low income prevalence (n(%)) 25 (15.7%) 38 (31.7)% 63 (22.6%) 20 (14.8%) 29 (30.5%) 49 (21.3%)

@ n=215 for energy density sample;

b =215 for BMI sample
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Table 2 Results of DRD4-7R VNTR *Food environment interaction for BtS-MAVAN Combined (models adjusted for age (in years), sex,
low household income status (< 45 K), and geographic clustering by Census tract)

Predictors BMI (n=279) Energy density (n =230)
DRD4-7R VNTR carrier 0.056 (95%Cl: —0.685, 0.797); P=0.88 0.51 (95%Cl: 0.199, 0.813); P=0.001
mRFEI 0.006 (95%Cl: —0.009, 0.021); P=044 0.004 (95%Cl: —0.002, 0.010); P=0.20

mRFEI*DRD4 7R VNTR

0.006 (95%Cl: —0.020, 0.031); P=0.65

—0.014 (95%Cl: —0.024, — 0.004); P=0.007

environments, with differences in energy density be-
tween carriers and non-carriers being approximately 0.3
SD (approximately 0.2 kcal/g) for children living in areas
of average mRFEI value and 0.6 SD (0.4 kcal/g) for those
in areas 1 SD below the mean (i.e. more unhealthy than
average). Finally, the figure also highlights that the area
for which carriers are more negatively affected by the
environment than non-carriers (labelled as ‘w’ for worse)
is greater than the area for which they are advantaged by
the environment (‘b’ for better). Overall, the results
appear to be more consistent with the diathesis-stress
hypothesis than the differential susceptibility hypothesis.

Discussion

Our data provide evidence of individual genetic differences
in the behavioural impact of the commercial food environ-
ment, supporting the moderating effect of the DRD4-7R

VNTR polymorphism. While results revealed that DRD4-7R
carriers had overall more energy dense diets than non-
carriers, this effect was more pronounced for children living
in areas with proportionally more unhealthy food retailers.
Further investigation of the pattern of interaction suggested
that results were consistent with a diathesis-stress pattern,
with no evidence of children who were carriers of the
DRD4-7R  VNTR polymorphism being more positively
affected by healthy food environments than non-carriers, as
would be expected under the differential susceptibility pat-
tern. Moreover, evidence of association between the food
retail environment and behaviour was only found for DRD4-
7R VNTR carriers.

The lack of evidence for differential susceptibility con-
trasts with other studies conducted investigating the
DRD4-7R VNTR polymorphism. In particular, a study
by Silveira and colleagues [34] conducted in the MAVA
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Fig. 1 Associations between mRFEl and energy density for DRD4-7R VNTR carriers and non-carriers. Shaded area represents the area for which
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N sample provided evidence of differential susceptibility
to socio-economic conditions in relation to food-related
outcomes, although the focus on fat preference rather
than total energy density intake may explain the differ-
ences considering that variations in the dopamine signal-
ling may be particularly and specifically linked to
variations in the intake of palatable foods [26]. Another
reason for the observed differences might be that the
benefits associated with favourable socio-economic con-
ditions may not depend on more healthful food sources,
but perhaps more on factors such as better food educa-
tion and parental support.

In contrast to the energy density results, no main or
interactive effects of gene and food environment were
found for zBMI. This null finding, however, does not
invalidate the results for energy density as they can be
due to a number of reasons. For example, dopamine
pathways and DRD4 polymorphisms have also been re-
lated to physical activity levels in animals and humans
[53], which may counteract the metabolic effect of a
high-energy diet. Unfortunately, physical activity data
were not available to test this explanation. Another
potential reason could be the relatively young age of the
sample, in which the cumulative impact of energy dens-
ity on BMI may not have yet taken place. Finally, obesity
and its associated markers are influenced by a range of
inter-related social, economic, cultural and community
factors. Future studies should be undertaken in larger
samples while considering a range of obesogenic factors
to explore potential mechanisms.

The results need to be interpreted in the context of
limitations tied to naturalistic observation and small
sample size of the study and they await further replica-
tion in both field and laboratory research studies. Statis-
tical power also did not allow testing for sex differences
in results, with previous studies indicating sex-specific
effects [34]. In addition, our sample combined data from
children from pre-school age up to 12years old, which
are likely to differ in their food preferences and level of
independence with respect to food decisions. Children
within this age range could also be considered to have a
limited impact on household food purchasing decisions.
However, children have been shown to influence super-
market purchases [54, 55]. Moreover, a study provided
evidence that younger children are more likely to ask for
advertised food products compared to adolescents [56].
Unfortunately, our sample size did not allow to test
whether results differed by age groups. Even though the
two data sources sampled children from the same
metropolitan region and used the same genetic and
environmental measures, the studies differed in their
sampling frames, anthropometric measurement methods
and food-frequency questionnaires used, which may
have introduced additional sources of heterogeneity in
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the combined data. Ethnicity and education measures
were not available in the BtS sample and were therefore
not considered in the analyses. Future studies should
therefore explore potential age- and ethnicity-related dif-
ferences and adjust for parental education. In addition,
information was not available on the genotype, pheno-
type or diet of the parents who play an important role in
shaping the family food environment, with recent find-
ings suggesting less healthful home food environment in
mothers with lower levels of executive functioning (also
related to the dopamine system) [57]. Future research is
also needed to characterize the neurobiological, behav-
ioural, and psychological endophenotypes associated
with the function of the dopamine pathways through
which DRD4-7R VNTR susceptibility impacts behaviour
(e.g., motivated attention, reward seeking, inhibitory
control, and mental flexibility) and using genome-wide
approaches. There is a need to trace the multiscale path-
ways linking genes and environmental factors to out-
comes through specific component brain processes,
characterizing the neuromodulator foundation of these
genetic variables in terms of the basic nature of their
reactivity to environmental contexts. Finally, the food
environment exposure only considered the type of food
outlets available locally and not the variation in foods
and marketing strategies used within each outlet and we
did not have information on where participants shopped
and what they bought. Future studies should consider
using sales receipts, sales or loyalty programs data com-
bined with genetic data for a more accurate portrait of
purchasing decisions and their genetic and environmen-
tal influences.

Conclusion

Results of the present study suggest that a common gen-
etic marker related to dopamine pathways can identify
children with greater responsiveness to local food envir-
onment. The results confirm the need for food environ-
ment research to move beyond determining whether
food environment matters, and to investigate for whom
it matters and under what conditions in order to develop
the best possible strategies to those most likely to benefit
from them.
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