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Abstract

Background: A challenge in environmental health research is collecting robust data sets to facilitate comparisons
between personal chemical exposures, the environment and health outcomes. To address this challenge, the
Exposure, Location and lung Function (ELF) tool was designed in collaboration with communities that share
environmental health concerns. These concerns centered on respiratory health and ambient air quality. The ELF
collects exposure to polycyclic aromatic hydrocarbons (PAHs), given their association with diminished lung function.
Here, we describe the ELF as a novel environmental health assessment tool.

Methods: The ELF tool collects chemical exposure for 62 PAHs using passive sampling silicone wristbands,
geospatial location data and respiratory lung function measures using a paired hand-held spirometer. The ELF was
tested by 10 individuals with mild to moderate asthma for 7 days. Participants wore a wristband each day to collect
PAH exposure, carried a cell phone, and performed spirometry daily to collect respiratory health measures. Location
data was gathered using the geospatial positioning system technology in an Android cell-phone.

Results: We detected and quantified 31 PAHs across the study population. PAH exposure data showed spatial and
temporal sensitivity within and between participants. Location data was used with existing datasets such as the Toxics
Release Inventory and the National Oceanic and Atmospheric Administration (NOAA) Hazard Mapping System.
Respiratory health outcomes were validated using criteria from the American Thoracic Society with 94% of participant
data meeting standards. Finally, the ELF was used with a high degree of compliance (> 90%) by community members.

Conclusions: The ELF is a novel environmental health assessment tool that allows for personal data collection
spanning chemical exposures, location and lung function measures as well as self-reported information.
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Background
The Exposure, Location and lung Function (ELF) tool
(previously called the Mobile Exposure Device) is an ex-
ample of an innovative approach to community-defined
research needs [1]. As described previously [1], the ELF
combines a portable spirometer, a customizable app (ELF
Tracker) on an Android smart phone [2] and lightweight
silicone wristbands [3]. This allows the ELF to simultan-
eously record daily chemical exposure for polycyclic

aromatic hydrocarbons (PAHs), geospatial coordinates of
participants, and lung function measurements.
There has been an increasing need for personal chem-

ical monitoring devices that are low-cost, easy to use, re-
quire minimal maintenance and can generate robust,
reliable data [4–7]. Current personal chemical exposure
monitors are often hampered by a limited range of
chemical substrates detected, a need for power (electrical
or battery) and maintenance, and can be bulky,difficult
to use and may alter a participant’s behavior due to the
weight (~5lbs) [8–10]. In addition, the need to evaluate
chemicals as complex mixtures rather than individually,
has added a difficult layer for personal monitoring.
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Studies have shown that passive samplers reflect the bio-
available fraction of lipophilic organic chemicals [11, 12].
When tested concurrently with an active air monitor
backpack (capable of detecting both semi-volatile and
particulate matter), the wristband correlated more
strongly with urinary PAH metabolites than either the
polyurethane foam or filter [10]. Similarly, other studies
report strong significant correlations between concentra-
tions in wristbands and concentrations in urine for flame
retardants [13, 14] and nicotine [15]. Furthermore, the
passive wristband sampler has high temporal and spatial
sensitivity [3], and, to date, has been used to detect and
quantify 1530 different organic chemicals, including 62
different PAHs [3, 10, 16, 17]. PAHs are present in crude
oil, tobacco smoke, certain petroleum products and are
produced through incomplete combustion, such as the
burning of fuel or smoking/charbroiling food [18].
Exposure to PAHs has been linked with diminished
respiratory health [19–26].
Mobile phones have the ability to track geospatial lo-

cation and applications (apps) can include question-
naires to add personal reporting around environmental
monitoring [27–30]. Recently, the Smoke Sense app re-
leased by the Environmental Protection Agency demon-
strated the integration of self-reported health data with
exposure to smoke from wildfires [31]. The use of apps
for disease management has also been explored, such as
colorimetric tests for detecting glucose, protein and pH
levels in urine [32], as well as cell phones for collecting
basic scientific information [33]. Other apps have been
developed to integrate with external instrumentation,
such as a lens to collect digital retinal images [34]. Simi-
larly, the Air-Smart Spirometer collects respiratory
health measures via an external spirometer with results
displayed on a smartphone or tablet [35]. Here, we de-
scribe the ELF Tracker which integrates compliance
data, collection of location data and collection and
transfer of spirometry data via an external spirometer
linked via Bluetooth.
Spirometry collects three measures of lung health: forced

expiratory volume in 1 s (FEV1), forced vital capacity
(FVC) and peak expiratory flow (PEF) [36]. These mea-
sures can reflect respiratory responses to exposure to air
pollution [37]. Acute exposures (< 24 h) can result in
changes to respiratory function measureable via spirometry
[37]. Prior studies have successfully used FEV1, FVC and
PEF to monitor changes in respiratory function [37–40].
Hand-held spirometers are capable of collecting valid
spirometry data outside of a clinical setting [35, 41, 42],
making them ideal for multi-day research studies.
The ELF was developed and refined in collaboration

with two community groups with similar air quality con-
cerns [1]. In each community, researchers worked with
established community groups and built off community-

led research initiatives. In Eugene, OR, and Carroll
County, OH, residents face concerns from industrial air
emissions and emissions from unconventional natural
gas drilling, respectively [1]. The ELF was designed to
capture the breadth of exposures in a full day (24 h).
Community members cited differing schedules and rou-
tines as a reason for looking at a full 7-day week,
explaining that each day might represent different expo-
sures [1]. In collaboration with these communities, a
multidisciplinary team of chemists, software engineers,
toxicologists, and environmental public health scientists
developed, refined and tested the ELF. To ensure the
ELF was responsive to community needs, members in
each community tested the ELF, thereby improving the
usability and accessibility [1]. The study presented herein
further evaluates the ELF to determine feasibility as an
environmental health tool.

Methods
The ELF tool
Shown in Fig. 1, the ELF is comprised of a portable
spirometer, wristbands, and an Android phone hosting
the ELF Tracker stored in a small, shoe-box sized clear
traveling case. The portable components of the ELF
weigh less than 0.6 pounds and can be easily carried
throughout the day. Each ELF component is further
described below.

Silicone wristbands
Wristbands have been previously described [3, 16]. Each
wristband was individually packaged in air-tight poly-
tetrafluoroethylene (PTFE) bags (Welch Fluorocarbon,
Dover, NH) for transport to and from participants. La-
bels were affixed to PTFE bags and participants recorded

Fig. 1 Photograph of the ELF components. Clockwise from left:
Activity log for self-reported environmental exposures, disposable
paper mouthpieces for use with the hand-held spirometer, 7 silicone
wristbands in air-tight packaging, and an Android phone hosting
the ELF Tracker
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the date and time they began wearing the wristband as
well as when they removed the wristband. Returned
wristbands were assessed to ensure they followed the
protocol: i. worn for 24 h ± 8 h; ii. on and off dates/times
recorded; iii. Worn individually and during appropriate
study times and days and; iv. placed in a PTFE bag with
an air-tight seal.

ELF Tracker
The application has been previously described [1, 2]. The
ELF Tracker was installed on an Android device with Blue-
tooth and Global System for Mobile communication
(GSM) networking capabilities. The ELF Tracker was de-
signed to transmit continuous spatial location measure-
ments collected from the cell phone, to record and
transmit spirometry data, and to prompt participants to
complete short questionnaires following each spirometry
session. It was pre-loaded with the participant identifier
and identifiers for each of the daily wristbands. For each
spirometry session, the ELF Tracker asked a series of ques-
tions to gauge protocol compliance and self-reported
asthma symptoms. Based on community feedback, the ELF
Tracker was updated prior to pilot testing to improve us-
ability [1]. The ELF Tracker utilizes data management
systems at the Pacific Northwest National Laboratory
(PNNL).

Portable spirometer
The Spirotel® spirometer (Medical International Research,
eHealth minilab, v1) measures lung function via three mea-
surements: FEV1, FVC and PEF. Prior to deployment and
immediately following collection of the ELF from a study
participant, the spirometer was calibrated by measuring
three tests with a 3 L calibration syringe (Hans Rudolph
Inc., Kansas City, MO). Using the American Thoracic
Society (ATS) guidelines, these repeated, controlled volume
measures demonstrated that all spirometers were within
the acceptable range of +/− 0.15 L (2.85–3.15 L) [36]. The
spirometer collects lung function data during a minimum
six second test where the user inhales and then exhales
forcefully. The spirometer indicates when the test has been
completed, which is when at least 6 s have passed.

Daily activity log
Each participant was asked to record [yes/no] any use of
or exposure to, the following: candles/incense, burnt
food, use of a fryer, broiler or charcoal grill and wood-
fired heating sources, as well as specific household prod-
ucts known to contain PAHs (i.e. caulks/sealants, spray
lubricant, moth balls/flakes, gasoline or vehicle exhaust).

Data management system
Study data were collected and stored in a commercial
Laboratory Information Management System (LIMS)

managed at Oregon State University. These data in-
cluded participant ID as well as unique identifiers for
each wristband in the study. Data generated in the ELF
Tracker or by the spirometer was pushed to servers at
PNNL through a REST API (Representational State
Transfer Application Programming Interface; a common
communication protocol in web-based applications).
Data was displayed in real-time via a secure, web-based
researcher portal. The portal supported input of partici-
pant demographic data, ongoing participant monitoring
and visualization of exposure, location and lung function
data. PNNL servers concurrently received data from the
LIMS and the ELF Tracker during the study through
secure communication channels, using standard en-
cryption protocols. The password-protected servers are
responsible for securely storing and presenting the data
as well as performing consistency checks. Constant
backups of the data streams are archived at PNNL on
secure, password-protected servers. All PNNL servers sit
on closely monitored, dedicated, segmented networks,
with strict network firewall protection.

Feasibility study
All activities were conducted under Institutional Review
Board approval from Oregon State University (protocol
#5736, 8058). Working with a local allergy clinic, eligible
participants were contacted via telephone and informed
of the study purpose, design and eligibility requirements.
Interested participants were asked to contact the re-
search team to determine if they met eligibility require-
ments: i) age 18 or older; ii) current asthma diagnosis,
iii) mild to moderate asthma (assessed via specific ques-
tions to gauge asthma severity); iv) current non-smoker
(prior smoking history allowable) and v) live within a 20
mile radius of Eugene, OR. Between August and September
2015, ten participants were enrolled. Each participant met
with a member of the research team to discuss the study
and answer any questions. Upon verbally indicating they
were willing to participate, and understood the research
goal and associated activities, each participant signed a writ-
ten consent form prior to undertaking any study activities.

Participant training/protocol
The study protocol involved a seven-day data collection
period. Participants completed a demographic and re-
spiratory health questionnaire and were instructed in the
use of the ELF. Participant training lasted a minimum of
45min. The NIOSH-certified trainer provided verbal in-
struction in the use of the spirometer, and coached the
participant with the spirometer until a valid reading was
obtained. A User Guide was also provided to each par-
ticipant, along with a one-page abbreviated sheet of in-
structions. Every 24 h, the daily wristband was removed,
sealed in a PTFE bag and replaced with a new wristband.
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The participant was asked to carry the cell phone, which
catalogued and transmitted location and spirometry data
to the research team in real-time [1]. Three times a day
(morning, noon, evening), participants were asked to
perform spirometry readings in triplicate. In the eve-
nings, the ELF Tracker asked questions to capture com-
pliance with the study protocol.

Evaluation
Participant feedback
Participants were asked to complete a short telephone
interview regarding their experience with the ELF. Four-
teen questions were asked, ranging from ease of use to
self-reported compliance and any open-ended feedback
from the participant.

Compliance and feasibility
The ELF was designed to meet the needs of researchers
and community members. Several metrics were identified
prior to testing: (1) ability to detect PAHs in a 24-h de-
ployment period with temporal and spatial sensitivity
across individuals (Exposure); (2) ability to collect geospa-
tial location and evaluate exposure to the environment
(e.g. toxic release industry sites, green spaces, exposure to
indoor air pollutants) (Location); (3) reliability of the port-
able spirometer to collect robust data and identify changes
in lung function (lung Function); (4) dependability of data
transfer within the ELF and from the ELF to computer
servers for secure storage and (5) ability of participants to
utilize the device for data collection with a high degree of
compliance. While this study was not designed to make
inferences regarding health status, examples of how the
data can be integrated are shown as appropriate.

Data analysis
Demographic/respiratory Health questionnaire/daily activity log
Questionnaires were transcribed and input into a database.
All analyses from the questionnaire data involved descriptive
statistics such as computing simple averages and propor-
tions of the study population (i.e. 100% of pilot participants
used medication to manage their asthma) using Excel. Data
from the Daily Activity Log were similarly analyzed.

Spirometry analysis
Upon completion of the study, raw data were analyzed for
basic quality control using American Thoracic Society
protocols [36] for FEV1 analysis. Following quality control
of the data, the largest FEV1 value from each reading was
used for analysis. The total number of valid FEV1 readings
was calculated to determine the percent compliance with
the spirometry protocol.
To compare changes in lung function across partici-

pants, the percent predicted FEV1 value was calculated.
This value adjusts for age, gender, height and ethnicity

[43]. This value tracks changes in lung function across
participants by comparing the test value FEV1 (FEV1test)
with the value predicted (FEV1predicted) for an individual
of that gender, age, ethnicity and height: (FEV1 test /
FEV1 predicted) × 100 = % predicted FEV1). The Hankinson
1999 spirometry references values, preferred by NHANES
III, were used for all calculations [44, 45].

ELF geospatial analysis
Outdoor air pollutant and built environment exposures
were estimated by integrating air emission records and re-
mote sensing imagery with participant time-activity patterns
using GPS coordinates. Spatial exposure estimates for each
GPS coordinate were calculated using the Python version
2.7 background processing extension in the spatial software
ArcGIS version 10.3.1. Time-weighted daily averages of
spatial exposure estimates were calculated using the statis-
tics software R version 3.4.1. Scripts and synthetic example
data are openly available [46]. Information for each environ-
mental database, source and website used in this study are
available in Additional file 1: Table S1. Maps throughout this
manuscript were created using ArcGIS® software by ESRI©.
ArcGIS® and ArcMap™ are the intellectual property of ESRI
and are used herein under said license.

Air pollutant exposures Daily and weekly PM2.5 expos-
ure estimates were derived by taking the time-weighted
average of hourly PM2.5 measurements from the nearest
EPA monitor [47] for each GPS coordinate (SI Eq. 1).
Daily and weekly exposure to toxic release inventory
(TRI) emissions were estimated by calculating the time-
and inverse-distance weighted TRI annual emissions (SI
Eq. 2). Daily and weekly exposure to highway and ex-
pressway roads (highly correlated with traffic-related air
pollution) were derived by calculating the time-weighted
length of roads within a 100m buffer of each GPS coord-
inate (SI Eq. 3). Chronic ambient PM2.5 and NO2 exposure
estimates were derived by extracting values at residential
locations from annual satellite-based land use regression
[48] and geographically-weighted regression [49] models
for NO2 (100m resolution) and PM2.5 (1 km resolution),
respectively.

Organic matter exposures The National Land Cover
Classification Database is a classification of all vegetation
land cover in the continental US at 30 m resolution. We
derived weekly estimates of exposure to multiple vegeta-
tion types by summing the element wise-multiplication
of the normalized difference vegetation index (NDVI)
with binary classifications of land types within 250 m of
each GPS coordinate and calculating the time-weighted
average (SI Eq. 4). Example vegetation types relevant
to respiratory outcomes include hay, grass, trees,
and wetlands.
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Wildfire proximity and smoke density/exposure Daily
and weekly exposure to wildfire smoke were calculated
by taking the nearest smoke density measurement for
each GPS coordinate (Additional file 1: Table S1).
Distance to nearest active wildfire was calculated for
each GPS coordinate as well.

Silicone wristband analysis
Following deployment, wristbands were stored in amber
jars at − 20 °C until extraction. Wristbands were extracted
as described previously [3]. Briefly, each wristband was ex-
tracted twice in ethyl acetate at room temperature and
quantitatively concentrated using TurboVap® evaporators
(Biotage LLC, Charlotte, NC). Wristband extracts were
quantitatively analyzed for 62 polycyclic aromatic hydro-
carbons (PAHs) with an Agilent 7889A gas chro-
matograph interfaced with an Agilent 7000 MS/MS, as
described in Anderson et al. 2015 [50]. A complete list of
PAHs and instrumental limits of detections (LODs) are in
Additional file 1: Table S2. These 62 PAHs include a wide
breadth of physical-chemical properties, ranging from
naphthalene’s molecular weight of 128.17 g/mol to diben-
zo[a,l]pyrene’s molecular weight of 302.37 g/mol [50]. All
chemical data analyses were performed using JMP Pro
version 13.0.0. To calculate median PAH concentrations
(ng wristband− 1), values below the LOD were assigned
values equal to one-half the LOD. All concentrations were
background and surrogate-corrected.
Wristband quality control (QC) samples represent 49% of

all samples analyzed. Blank wristbands were collected dur-
ing wristband preparation deployment and retrieval. In
blank QC samples, 56 of the 62 PAHs were below the LOD.
Continuing calibration verifications (CCVs) were analyzed
every 10 samples. The CCVs include all target PAHs and,
per our data quality objectives, at least 80% of the PAHs in
the CCVs were within 20% of the true concentration.

Results
Participants
The majority of individuals were female (90%, Table 1),
and had associated allergic diseases (hay fever, eczema
and allergies), along with a family history of allergies.
Participants were majority Caucasian and half the study
group were former smokers; all were under medical
management for their asthma (Table 1). On average
participants spent up to 20% of their time outdoors
(SD = 0.16), reporting the rest of the time (80%) spent
indoors at home, work, school or transit.

ELF feasibility metrics
1. Ability to detect PAHs in a 24-h period with temporal and
spatial sensitivity across individuals (exposure)
Of 70 deployed wristbands (10 participants, 7 daily
wristbands), 69 were returned, with one wristband lost

by a participant. Seven other wristbands did not meet
compliance protocols, primarily due to wristbands being
worn outside of the designated 24 ± 8 h window (6/7 non-
compliant wristbands). The remaining 62 wristbands were
used for all further analyses.
Thirty-one PAHs were detected in the wristbands. Nine

PAHs were found in all wristbands, (phenanthrene, 2-
methylnaphthalene, 1,6-dimethylnaphthalene, naphthalene,
2,6-dimethylnaphthalene, fluorene, 1-methylnaphthalene,
2-ethylnaphthalene, and dibenzothiophene; listed from
highest to lowest median concentration) (Additional file 1:
Table S2). The median number of PAHs detected per wrist-
band was 17, ranging from 12 to 25 detections. The PAH
exposure profile was unique to each individual (Fig. 2).
Participants self-reported a range of exposures to

PAH-containing sources. On average, participants re-
ported being exposed to 4 sources: cosmetics/lotions,
household cleaners, hair spray and vehicle exhaust.

2. Ability to collect geospatial location and evaluate spatial
exposure to the environment
The ELF Tracker utilized a set location sampling sched-
ule (every 15 min) and used estimates from the acceler-
ometer in the Android phone to increase the sampling
rate as needed. A total of 9811 GPS coordinates were
collected for all 10 participants over 7 days. The average
number of GPS coordinates collected per person was
981 (max = 2271, min = 603). Average environmental

Table 1 Participant demographics

Number of participants 10

Average age (years ± SD) 49.1 (14.2)

Gender

Male 1

Female 9

Employed (%) 90%

Race

White 9

Asian 1

Other –

Average age of Asthma Diagnosis (years ± SD) 10.2 (13.7)

Asthma controlled by medication (%) 100%

Former smoker 50%

Associated allergic diagnosis N (%)

Hay fever diagnosis 6 (60%)

Eczema diagnosis 4 (40%)

Allergies 9 (90%

Specific allergies to plants (hay, trees, grass, pollen) 5 (50%)

Specific allergies to animals 6 (60%)

Family history of allergies 9 (90%)
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exposure statistics based on location were calculated on
a daily (24-h) basis (Additional file 1: Table S3). For ex-
ample, data from the ELF Tracker was capable of deter-
mining if a participant was driving, as well as calculating
the distance from the nearest Toxic Release Inventory
source. The location data allows analysis of individual
exposures, as well as analysis of correlations between ex-
posure variables.
Correlations between all location-based exposures can

be seen in Fig. 3. For example, proximity to urban areas is
positively associated with time spent driving. For the
majority of the study, participants spent their time in or
near urban areas (Additional file 1: Table S4). Conversely,
proximity to an NDVI classification of urban was nega-
tively correlated with proximity to NDVI classifications of
land used for hay or crops (Fig. 3). These associations are
expected and suggest that future work may expand to
evaluate correlations between TRI sites, wildfire smoke,
chemical exposure and respiratory health.
The sensitivity of the GPS data allowed for analysis of in-

dividual proximity to air quality monitors, exposure to wild-
fire smoke/proximity to wildfires and proximity to sources
of industrial toxic releases (Fig. 4). Exposure to wildfire
smoke is of increasing concern on the west coast. During
the pilot phase, the nearest wildfire was over 25 km away,
with participants potentially exposed to 16 μg/m3 of

smoke daily during the data collection week (Additional
file 1: Table S3).
Use of public databases also allowed investigation of

exposure to the natural environment, to include expos-
ure to different types of vegetation based on location
(Fig. 5, Additional file 1: Table S4). As noted in Tables 1,
90% of pilot participants had allergies, and 60% specific-
ally noted a hay fever diagnosis. Of the 9 individuals
with allergies, 5 noted an allergy to plants (grass, hay,
trees, pollen). Therefore, evaluating proximity to known
allergy-inducing vegetation may be useful.

3. Reliability of the portable spirometer to collect robust
data and identify changes in lung function
As shown in Table 2, participants adhered to the spirom-
etry protocol, taking 3 readings per day (93% compliance)
and collecting data that met American Thoracic Society cri-
teria for validity (94% of readings were valid; Table 2) [36].
Changes in FEV1 were analyzed across the study

period for intra- and inter-participant analysis. The
morning, afternoon and evening FEV1 values for one
representative ELF participant is shown in Fig. 6a-c. To
evaluate changes in lung function between participants,
the percent expected FEV1 was calculated. As shown in
Fig. 6d, this method allows for analysis of changes in
lung function across the study population.

Fig. 2 PAH concentrations for the 62 wristbands worn by 10 study participants. The grayscale indicates concentration (on a log scale) for all PAHs
detected above the limit of detection (LOD)
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4. Data transfer within the ELF (spirometer > phone) and
from the ELF to computer servers for secure storage
The ELF Tracker performed as designed (Table 2). Over
500 spirometry values were transmitted to the research
servers. Of the data collected (wristband identifiers, par-
ticipant identifier, time-stamps, location data, etc.), 95%
were transmitted accurately and in near real-time. The
lower level of compliance with data (spirometer, location
and questionnaire) is due to data from one participant

on the last day of the study being stored on the phone
and not transmitted, equivalent to 5% of the total data
transmitted within compliance. This was due to the
phone either being out of service or turned off prema-
turely (an issue replicated in internal testing). However,
as the ELF Tracker was designed to store all data locally,
the data can be retrieved either directly from the phone,
or by opening the App and allowing it to connect to
servers automatically. The latter allowed full recovery

Fig. 3 Correlations between location-derived variables. a Correlations are sorted to group negative (red) and positive (blue) correlations. Color
intensity and the size of the squares are proportional to the correlation coefficients. b Definition of variable names

Fig. 4 Participant location and environmental exposures. Displays the GPS locations of participants (blue dots, n = 4) on August 22, 2015 plotted
in relationship to (a) EPA Air Quality Monitors (red outline), (b) wildfire smoke density, measured as a range of low (5 μg/m3) medium (16 μg/m3)
or high (17 μg/m3) and (c) TRI sites (red diamond)
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of the data when the phone was returned upon study
completion.

5. Ability of participants to utilize the device for data
collection with a high degree of compliance
The ELF Tracker captured real-time compliance metrics.
In the evening, participants were asked questions de-
signed to gauge compliance with basic study protocol,
for example carrying the phone all day and wearing a
different wristband all day. However, only 91% of the

evening questionnaires were completed, making overall
compliance analysis difficult (Table 2). For the days these
questionnaires were completed, compliance was high,
with the majority of participants reporting that they kept
the phone on them all day and wore a different wrist-
band each day.

Feedback on the ELF
A basic assessment of compliance was conducted in
addition to specific questions regarding the use of the

Fig. 5 Participant proximity to roads and vegetation. Location (blue dots, n = 4) on August 22, 2015 plotted with (a) major and minor roads,
(b) 2014 Oregon Land Classification, (c) August NDVI, and (d) August Hay NDVI
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device (ease of using the device, wristband comfort, ease
at following the protocol) and suggestions for improve-
ment (Table 3). Participants were contacted by telephone
1–2 weeks upon completion of the study protocol. Par-
ticipant feedback was largely positive regarding ability to
follow the protocol and the use of the ELF as a tool.
Overall, participants suggested small changes to the la-

beling system used on the wristband packaging to better
identify the appropriate daily wristband. Regarding the use
of the ELF as a community tool, participants reported
wanting different sizes of the wristband. Additional con-
siderations centered on privacy, with participants noting it
was difficult to take the spirometry measurements, espe-
cially during the day when at work. Furthermore, partici-
pants noted it was inconvenient to carry the study cell
phone in addition to their personal phone.

Discussion
This work describes the refinement and feasibility test-
ing of a novel environmental health tool and a descrip-
tion and demonstration of preliminary exposure and
health outcome measures. The ELF was designed to
address community concerns, while also collecting ro-
bust data capable of addressing environmental health
research concerns. While the use of cell phones to

collect location and health symptoms/diagnostics have
been successful [27–30], the ELF leverages multiple tech-
nologies to expand the capabilities afforded by a mobile
phone alone. Importantly, the ELF combines environmen-
tal monitoring (i.e. detection of PAHs) with location as
well as quantifiable respiratory health measures.
The data indicate that the ELF is easy to use by re-

search participants, and capable of gathering the type of
data needed to begin addressing the larger research
questions around exposure and health. The high degree
of compliance indicates that the tool is easy to use. The
ELF Tracker can meet several of the criteria needed for
community-engaged research, specifically the need for a
tool that can collect robust and rigorous data that is
comparable to other scientific studies [51, 52].
To our knowledge, this is the first demonstration of

PAH levels in wristbands being measured concurrently
with FEV1 levels. Personal exposure to PAHs has been
previously associated with several adverse outcomes re-
lated to lung function [19, 21–25], and this easy-to-use,
integrated ELF tool can be used to further explore these
relationships. Using this dataset, the ELF collected
chemical exposure data for up to 62 PAHs each day.
The exposure data demonstrated unique patterns of ex-
posure between individuals and identified the most

Table 2 Compliance and feasibility metrics

Metric Compliance

Participant Compliance wristband: returned all wristbands at end of study 99%

wristband: compliance and quality metrics followed 90%

Spiro: 3 readings/day 93%

Spiro: All recorded readings done in triplicate 100%

ELF Tracker: Answered 3 questionnaires/day 94%

ELF Tracker: Answered evening questionnaire 91%

Log: Filled out each day 99%

Phone: Carried on person all day 95%

Wristband sensitivity PAHs detected at measureable levels each day Table S2

Variable chemical concentrations detected between days and between participants See Fig. 2

Data transfer Study ID included with all transmitted data 90%

All data received was accurately time-stamped 100%

No data gaps (i.e. participant indicated readings taken but PNNL received no data) 95%

Location data received 95%

Spirometry data received 95%

Questionnaire data received 95%

Data Accuracy Spirometer: Values met American Thoracic Society guidelines for quality data:
- FEV1/FVC ratio below 1.00
- In triplicate readings, the two largest FEV1 values are within a reading are within 0.150 L of
each other

- In triplicate readings, the two largest FVC values are within 0.150 L of each other

94%

Spirometer: Portable spirometer is sensitive enough to detect variations in lung function
within-day and within the study period.

See Fig. 6

Spirometer: Maintains calibration during study duration (Within 2.5% of known volume) 100%
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common PAH exposures across individuals. Previous
work has demonstrated that silicone wristbands seques-
ter volatile and semi-volatile compounds and illustrate
spatial differences between individuals [3, 16, 53–57].
Here, we detect PAHs in non-occupational 24-h deploy-
ment periods using wristbands. In larger studies with the
ELF, we will be able to directly compare PAH exposure

profiles from wristbands with FEV1 measurements from
spirometers. While this feasibility study focused on
PAHs, currently the wristband can be analyzed for 1530
chemicals, allowing future analysis to evaluate a larger
chemical inventory [17].
The ELF Tracker collected physical location data using

the smart-phone GPS capability. Regional built environ-
ment and atmospheric exposures are associated with
multiple respiratory health outcomes. Acute outdoor
fine particulate matter and ozone [58, 59], industrial air
emissions [60], and traffic-related air pollutants [59, 61]
are associated with increased rates of asthma-related
hospital visits. Urban nature is also associated with re-
spiratory health outcomes, both positive and negative.
While exposure to parks, tree canopy, and gardens are
associated with decreased concentrations of air pollution
and decreased rates of asthma [62] and asthma-related
hospitalizations [63], exposure to pollen is associated with
increased rates of allergic airway inflammation [49, 64].
Evaluating these ambient environmental exposures has
significant potential to reduce residual confounding and
adjust for competing risks in air pollution epidemiology.
The collected GPS data can therefore be used to look at
multiple metrics, such as co-occurring exposure to pollut-
ants like PM2.5, NO2 and ozone, or determine exposure

Fig. 6 Percent predicted FEV1. Data for an ELF participant is shown across the seven day study period in the a morning, b afternoon and
c evening. d Percent predicted FEV1 values from morning spirometry readings are shown for all ten study participants. Values are marked
numerically [1–10] to delineate individual results

Table 3 Results from follow-up interviews conducted after the
7-day study period

n = 10

Yes

Were you able to keep the ELF with you easily enough? 90%

Did you wear a different wristband each day? 90%

Was the wristband:

Comfortable? 100%

In your way? 0%

Easy to switch each day? 90%

Did you place the wristband back in its bag and seal the bag? 100%

Did you use the spirometer three times a day? 100%

Was the cell phone application easy to use? 100%

Was the spirometer easy to use? 100%

Did you have any problems charging the cell phone or spirometer? 0%
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from nearby emission sources, to include major roads or
conversely, to estimate time spent near green spaces. Cur-
rently, such correlations are dependent on stationary air
monitoring networks, such as the Air Quality Data Mart
system run by the Environmental Protection Agency, or
the Toxic Release Inventory [47, 65]. However, in Eugene,
OR, there are only two monitors within the city, and a
third located 25miles south of the city. As a result, there
are geographic and spatial gaps within the linked air qual-
ity monitor and location data. TRI data is limited tempor-
ally; the data is representative of total air emissions
averaged over one year, and therefore may not be repre-
sentative of exposure during the times participants were
monitored. However, emerging data sources such as
Google Street View can monitor the built environment
[66, 67] and collect air quality measurements [68]. Grow-
ing use of the NOAA Hazard Mapping System has
allowed evaluation of wildfire smoke exposure [69–71],
although the system is limited by cloud cover, which can
interfere with identification of smoke and/or fire. Add-
itionally, citizen science efforts have resulted in networked
community air monitors to measure urban air quality
[72]. These are examples of publicly available databases
that can evaluate relationships between locations and
PAH sources. We show here that the ELF Tracker can be
integrated with multiple databases, allowing analysis of
personal location data to sources of pollution as well as
time spent near sources.
The portable spirometer allowed analysis of lung func-

tion within and between participants with over 90% of
all tests collecting valid spirometry data. Furthermore,
over 90% of all readings complied with study protocol
and accepted spirometry validity guidelines, indicating
that the portable Spirotel® spirometer is easy to use, con-
forms to standards and collects robust, valid data. Fi-
nally, the ELF was well-received by participants and
demonstrated an overall compliance rate of over 90%
across all components. Furthermore, the various datasets
generated by the ELF, in combination with existing data-
sets (NOAA Hazard Mapping, EPA Data Mart, etc.)
demonstrated the feasibility of integrating multiple data-
sets to identify correlations between health outcomes,
chemical exposures and location metrics (TRI sites,
NOAA Hazard Mapping, EPA Data Mart). This allows a
comprehensive evaluation of exposure and health out-
comes beyond measuring a single metric of exposure.
The purpose of this study was to evaluate and assess the
ELF as an environmental health tool capable of being
used by study participants with a high degree of compli-
ance, collecting multiple data types (chemical exposure,
physical location and respiratory health outcomes), and
generating valid, accurate datasets. This trial resulted in
a refinement of the ELF protocol, dropping the after-
noon spirometry readings and improving the GPS

sensitivity to better calculate time spent indoors vs. out-
doors. While the ELF is capable of meeting the defined
metrics, limitations include the small sample size (n = 10),
preventing any exposure-health insights. Regarding the
use of the ELF as an environmental health tool, we have
previously conducted research evaluating the ease-of-use
and compliance with the ELF tool [1], as well as the effi-
cacy of using an online app to collect health and exposure
metrics [2]. Furthermore, we have published on the use of
the wristband as a tool that demonstrates high compliance
[10, 56, 57]. Importantly, while the sample size is small, it
generated relevant and diverse data, allowing insights into
data management and data integration methodologies for
use in public health.
The ELF tool is now being used in a panel study to

evaluate relationships between chemical exposure, phys-
ical location and lung function. Future work will enable
download of the ELF Tracker on multiple operating
systems (Android, iPhone, Windows, Blackberry). The
ability to utilize personal phones may improve compli-
ance and reduce burden on the participant [30]. Finally,
we have collaborated with community liaisons to begin
developing an interactive, online report-back format to
allow study participants to view their data (manuscript
in preparation). Previous studies utilizing the wristband
alone have reported data back to participants to enable
improved understanding of exposure and provide mech-
anisms to reduce exposure [56, 57].

Conclusions
Community-based participatory research studies are
designed to address relevant and timely environmental
health research questions; here, we describe a novel
environmental health tool that can address complex
questions around personal exposure to chemical con-
taminants and potential associated health outcomes.
This tool has a high degree of compliance by partici-
pants and collected robust data allowing analysis of
chemical exposure patterns across participants, relation-
ship to the physical environment and relationship to re-
spiratory health measures.
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