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Abstract

Background: Recently, we have shown that the age-specific prevalence of a disease can be related to the
transition rates in the illness-death model via a partial differential equation (PDE). The transition rates are the
incidence rate, the remission rate and mortality rates from the ‘Healthy’ and ‘Ill’ states. In case of a chronic disease,
we now demonstrate that the PDE can be used to estimate the excess mortality from age-specific prevalence and
incidence data. For the prevalence and incidence, aggregated data are sufficient - no individual subject data are
needed, which allows application of the methods in contexts of strong data protection or where data from
individual subjects is not accessible.

Methods: After developing novel estimators for the excess mortality derived from the PDE, we apply them to
simulated data and compare the findings with the input values of the simulation aiming to evaluate the new
approach. In a practical application to claims data from 35 million men insured by the German public health
insurance funds, we estimate the population-wide excess mortality of men with diagnosed type 2 diabetes.

Results: In the simulation study, we find that the estimation of the excess mortality is feasible from prevalence and
incidence data if the prevalence is given at two points in time. The accuracy of the method decreases as the
temporal difference between these two points in time increases. In our setting, the relative error was 5% and below
if the temporal difference was three years or less. Application of the new method to the claims data yields plausible
findings for the excess mortality of type 2 diabetes in German men.

Conclusions: The described approach is useful to estimate the excess mortality of a chronic condition from
aggregated age-specific incidence and prevalence data.

Trial registration: The article does not report the results of any health care intervention.

Keywords: Chronic disease epidemiology, Multi-state model, Prevalence, Incidence, Dementia, Diabetes, Partial
differential equation, Bayes estimation

Background
Recently, we have shown that the age-specific prevalence
of a health state or disease can be related to the transition
rates in the illness-death model via a partial differential
equation (PDE) [1, 2]. The transition rates are the inci-
dence rate, the remission rate and mortality rates from the
Healthy and Ill states (Fig. 1). In case of a chronic disease,

i.e. a disease with no remission, this relation can be used
to estimate the incidence from a sequence of cross-
sectional studies if information about mortality is available
[3]. This might be an alternative way to estimate the inci-
dence of a chronic condition in situations where follow-up
studies are challenging to conduct or not feasible at all.
In this article, we demonstrate that it is also possible

to estimate excess mortality from age-specific prevalence
and incidence of a chronic disease. This can be useful
for the analysis of data where it is difficult to observe
mortality directly, for instance in disease registers [4] or
health insurance claims data where cases of death might
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be reported with a delay [5]. Another example where
excess mortality of a chronic condition cannot be
estimated directly is the US National Health Interview
Survey (NHIS) from the National Center for Health
Statistics [6]. NHIS is a yearly cross-sectional household
interview survey with up to 90,000 participants each
year. Usually, participants are followed up for mortality
by linkage to the National Death Index. This implies that
it is possible to check the vital status of a participant
from a previous cross-sectional interview, but it is not
possible to decide if a deceased participant who had
been disease-free at the interview, has contracted the
disease in the period between the cross-section and the
date of death. With other words, for a subject disease-
free at the interview, it is not possible to determine the
disease status at death. Thus, in estimating the mortality
it is uncertain to attribute this case to the mortality of
the healthy or of the diseased subjects.
To overcome these problems, we examine mathem-

atical relations of the illness-death model and associ-
ated PDEs to develop reliable estimators for excess
mortality.

Methods
Illness-death model
We consider the illness-death model as shown in Fig. 1.
Each subject of the population is in one of the relevant
disease states, Healthy (with respect to the considered
chronic disease) Ill or Dead. Let the number of people
aged a at calendar time t in the Healthy and Ill states be
denoted by H(t, a) and I(t, a), respectively. Subjects can
transit from both states into the (absorbing) state Dead.
The transition rates between the three states are the
incidence rate (i), the remission rate (r), the mortality
rate of the healthy (m0) and the mortality rate of the
diseased (m1). These rates usually depend on calendar
time t and on age a. Henceforth, we consider only
chronic, i.e., irreversible diseases, which is equivalent to
a remission rate of zero (r = 0).

To develop estimators for the excess mortality Δm = m1

– m0, we use mathematical relations between the inci-
dence, prevalence p(t, a) = I(t, a)/{I(t, a) + H(t, a)} and
the mortality rates in the illness-death model.
An alternative epidemiological measure to Δm for

assessing discrepancies between the mortality rates m0

and m1, is the mortality rate ratio R = m1/m0 which is of
potential interest for practitioners. The mortality rate
ratio R expresses the mortality rate of the diseased
people relative to the non-diseased at the same age. Due
to this plain interpretation, R is more often used than
the (absolute) excess mortality Δm. Both measures, Δm
and R, are related by R = 1 + Δm/m0.

Direct estimation in simulated data about dementia
To illustrate how measures of excess mortality in a
chronic disease can directly be estimated from incidence
and prevalence data, we conduct a simulation study. We
mimic a sequence of two cross-sectional studies for a
chronic disease in two different years t1 and t2 centered
at the year t = 2000. Let ΔT = t2 – t1denote the differ-
ence between t1 and t2, i.e. t1 = 2000 – ΔT/2 and t2 =
2000 + ΔT/2. In each of the cross-sectional studies at t1
and t2, the age-specific prevalence p is surveyed (Fig. 2).
The aim is to estimate the excess mortality at year t =

2000 from the cross-sectional prevalence data at t1 and
t2 and the incidence. To assess the impact of the
temporal difference between the cross-sectional studies,
we vary ΔT from 0.1 to 10 (years). Together with the
age-specific incidence rate i at t = 2000, the prevalence
data in the two years t1 and t2 serve as input values to
estimate the excess-mortality in the year t = 2000. The
estimated excess mortality is then compared with the
rates used to set up the simulation study in terms of
absolute and relative bias.
The input data for the simulation are motivated

from survey data about dementia in the female popu-
lation of Europe [7]. Dementia is a major health
problem in many countries with potentially increasing
prevalence in the future [8]. The age-specific preva-
lence p for each of the two years t1 and t2 is calcu-
lated analytically with the incidence rate i from [7].
The age-specific mortality rate m0 of the dementia-
free population is chosen to be m0(t, a) = exp.(−
10.7 + 0.1a + t ln(0.99)) aiming to approximate the
mortality of the European population based on the
Gompertz-Makeham law of mortality [9]. In addition,
we assume that the mortality m1 of the diseased
people can be written as a product of m0 and R:
m1(t, a) = R(t, a) ×m0(t, a) with log R(t, a) = log(3)
+ [log(1.5) – log(3)] (a – 60)/(90–60). The rationale
for choosing this R is based on the idea that m1 also
follows a Gompertz-Makeham law. Then, the loga-
rithm of the quotient m1/m0 is a straight line as given

Fig. 1 Illness-death model. The transition rates i (incidence), r
(remission), m0 (mortality of the healthy), m1 (mortality of the
diseased) between the compartments depend on calendar time
t and age a. In case of chronic diseases, there is no way back
from the Ill state to the Healthy state (dashed line). Then, the
remission rate r equals zero
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here. The specific numerical values in the definition
of R are chosen to mimic the age-dependency as re-
ported in [10], where R was found to be about 3 and
1.5 at 60 and 90 years of age, respectively. Note, how-
ever, that in this simulation we want to demonstrate
feasibility of the method in a realistic range of param-
eters. We do not aim for the best obtainable agree-
ment between our input data and the observed data.

Bayes estimation and application to claims data
After describing the direct estimation, we present an
estimation method in the framework of Bayesian in-
ference. Bayes methods are increasingly used in ap-
plied statistics because they provide a flexible
framework for the analysis of scientific problems and
quantifying uncertainty in their solution [11]. As an
application of the Bayesian approach, we estimate the
excess mortality of type 2 diabetes in the year 2012
from claims data comprising 35 million German men.
Goffrier and colleagues [12] reported the age-specific
prevalence of diabetes among German men in the
years t1 = 2009 and t2 = 2015 as shown in Fig. 3. In
the same work, the age-specific incidence rate i in
2012 has been surveyed. The data for this analysis is
publicly available and can be found in [12].
Our aim in the diabetes example is to estimate the

age-specific mortality rate ratio R in the range 50 to
90 years of age. Recently, for a smaller age range the
mortality rate ratio has been estimated in Tönnies et
al. [13]. Compared to [13] we extend the age range
by the novel Bayesian approach.
The idea for the Bayes method is that for given age-

specific prevalence p, incidence rate i and general mor-
tality m, an estimate of the excess mortality in terms of
the mortality rate ratio R is desired. According to the
Theorem of Bayes [11] we obtain.

f R jpð Þ∝ f pjRð Þ x f Rð Þ ð1Þ
where f(R |p) is the posteriori distribution of R, f(p|R) is

the probability density function of p given R and f(R) de-
notes the priori distribution of R. For clarity, we assume
that i and m are known. Motivated by empirical findings
from the Danish Diabetes Register [14], we assume that the
logarithm of the age-specific mortality rate ratio R approxi-
mately is a straight line in the age range 50 to 90 years:

log R að Þð Þ ¼ log R 50ð Þð Þ þ log R 90ð Þð Þ � log R 50ð Þð Þ½ �
a� 50ð Þ= 90� 50ð Þ

ð2Þ

Fig. 3 Surveyed age-specific prevalence p of type 2 diabetes in
German men in 2009 (black line with circles) and 2015 (blue
with crosses)

Fig. 2 Prevalence data from two cross-sections at time t1 and t2 are used to estimate the excess mortality midpoint at t = t1 + ΔT/2 = t2 - ΔT/2
(figure adopted from [Bri16]])
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For estimation of R(50) and R(90) in Eq. (2), we use
weakly informative prior distributions R(50) ~ U(2; 9)
and R(90) ~ U(1; 2); again inspired by the Danish dia-
betes register. U(v; w) means the continuous uniform
distribution with minimum and maximum value v and
w, respectively. In Bayesian terminology, our aim is to
estimate the joint a-posteriori distribution for R(50) and
R(90).
To use Eq. (1) for the estimation of R given p, we

apply three steps: 1) values for R(50) and R(90) are
drawn from the uniform prior distributions, 2) solving
the PDE with initial condition p(2009; a) as given in [12]
and 3) comparing the calculated solution p in 2015 with
the surveyed values.
For solving the PDE, we use the Method of Character-

istics [15] to first convert the PDE into an ordinary dif-
ferential equation (ODE) and then, second, solve the
ODE by the Runge-Kutta Method of fourth order [16].
Next, the calculated prevalence in 2015, p(2015; a), is
compared with the observed prevalence in 2015 given by
[12]. The age-specific prevalences p in the years 2009
and 2015 are shown as black and blue lines in Fig. 3, re-
spectively. As conditional distribution f(p|R), we chose
the multivariate normal distribution.

f pjRð Þ∝ exp: − pmod � pobsð Þt Σ−1 pmod � pobsð Þ=2� �

where pmod = pmod(R) is the solution of the PDE for a
given R. The conditional distribution f(p|R) assesses the
differences between the modeled pmod and observed
prevalences pobs. The covariance matrix Σ is estimated
by following diagonal matrix:

Σ ¼ diag p j 1� p j

� �
=n j

� �

with age-specific prevalences pj and the corresponding
number of people nj in the age group j. Choosing the co-
variance matrix as a diagonal matrix makes the implicit
assumption that the prevalences pj are stochastically in-
dependent. A justification for this assumption is the fact
that people belonging to one age group are different
from the people in another age group.
In a sensitivity analysis, we released the assumption

of weakly informative priors (R(50) ~ U(2; 9), R(90) ~
U(1; 2)) and examined the impact on the estimation
of R(50) and R(90). For this, we choose R(50) and
R(90) from a bivariate normal distribution with mean
(5.5, 1.5), standard deviation of 1 and 0.1 in R(50)
and R(90), respectively, and a correlation coefficient
of 0.9 between R(50) and R(90). These assumptions
lead to the following covariance matrix for the joint
distribution of R(50) and R(90):

12 0:9� 1� 0:1
0:9� 1� 0:1 0:12

� �

Results
Illness-death model
The age-specific prevalence p(t, a) = I(t, a)/{H(t, a) + I(t,
a)} i.e., the percentage of people aged a at time t who
are chronically ill, is the solution of the following partial
differential equation (PDE):

∂t þ ∂að Þp ¼ 1−pð Þ i−p m1−m0ð Þf g ð3Þ

In Eq. (3), ∂t and ∂a denote the partial derivatives with
respect to t and a, respectively. The mathematical proof
for Eq. (1) can be obtained from examining the change
rates of the number of healthy and ill people in the
illness-death model (H and I in Fig. 1) [17] or by using
the theory of stochastic processes [2].
Eq. (3) implies that the excess mortality Δm = m1 –

m0 can directly be estimated from the incidence rate i,
prevalence p and the temporal change of the prevalence
((∂t + ∂a)p):

△m ¼ i−
∂t þ ∂að Þp
1−p

� 	
=p ð4Þ

Note that for direct estimation of the excess mortality
Δm by Eq. (2) only the incidence rate i and the preva-
lence based figures p and (∂t + ∂a) p are necessary. No
additional data are needed.
Instead of using Eq. (3) for a relation between the inci-

dence, prevalence and mortality, an alternative way is
possible by considering the prevalence-odds θ(t, a) = I(t,
a)/H(t, a). For the prevalence-odds θ we find the follow-
ing PDE, which is equivalent to Eq. (3):

∂t þ ∂að Þθ ¼ i−θ m1−m0−ið Þ ð5Þ

Equation (5) was first published by Brunet and Stru-
chiner [18]. The derivation is given in an additional file
[Additional file 1]. Compared to Eq. (3) the PDE (5) has
the advantage of being linear. Solving PDEs like Eq. (3)
and (5) is usually accomplished by transformation into
an equivalent ordinary differential equation by the
Method of Characteristics [15]. In case of Eq. (3), the
resulting ordinary differential equation is of Ricatti type
[19], which in general can only be solved numerically
because an explicit representation of the general solution
does not exist [20]. In case of the equivalent Eq. (5),
however, an explicit representation of the solution
indeed is possible. As detailed in the additional file [see
Additional file 1] it holds:
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θ t; að Þ ¼
Za

0

i t−s; a−sð Þ exp −φt;a sð Þ
� �

ds ð6Þ

For brevity, in Eq. (6) it was set φt;aðxÞ ¼
R x
0 ½m1−m0−i�

ðt−xþ τ; a−xþ τÞdτ
The explicit representation of the solution θ in Eq. (6)

allows to calculate θ with any prescribed accuracy, e.g.
by Romberg integration [16], which we will use in the
examples below. Applying the back-transformation
p = θ/(1 + θ) yields the prevalence p.
For later use, we note that Eq. (3) can also be

expressed in terms of the mortality rate ratio R and the
general mortality m = p m1 + (1 – p) m0:

∂t þ ∂að Þp ¼ 1−pð Þ i−m
p R−1ð Þ

1þ p R−1ð Þ

 �

ð7Þ

Direct estimation: dementia in the female population of
Europe
After calculating the prevalence-odds θ in years t1 and t2
by Eq. (6), the associated prevalences p = θ/(1 + θ) are
calculated. Figure 4 shows the age-specific prevalences
for the years t1 = 1990 (dashed line) and t2 = 2010 (solid
line). To demonstrate that our simulated prevalence has
a reasonable range, we additionally plotted the surveyed
values for European women reported in [8]. The pro-
posed method to estimate the excess mortality Δm in
the year t = 2000 is the direct application of Eq. (4). The
partial derivative (∂t + ∂a)p in Eq. (4) is approximated by
a finite difference:

∂t þ ∂að Þp t; að Þ ≈ p t þ △T=2; aþ △T=2ð Þ
−p t−△T=2; a−△T=2ð Þ=△T

Then, the excess mortality Δm can be estimated by
plugging these numbers into Eq. (4). In case the mortal-
ity rate m0 of the non-diseased is known, the age-
specific mortality rate ratio can be calculated by R =
1 + Δm/m0. Table 1 shows the true and estimated values
for R at different ages and various choices of ΔT.
From Table 1 we can see that the absolute relative

Error increases as the temporal difference ΔT between
the cross-sections increases and that absolute relative
error increases as the age decreases. In the extreme case
(age 60, ΔT = 10), the absolute relative error reaches
nearly 30%. This indicates that in case two cross-
sectional studies are separated by more three years (i.e.,
ΔT > 3) the method yields feasible results only in the
higher age groups.

Bayesian estimation of excess mortality in male diabetics
from Germany
The log-likelihood of the a-posteriori distribution f(R|p)
∝ f(p|R) × f(R) is shown in Fig. 5. The black cross indi-
cates the maximum aposteriori (MAP) estimator for
these data, which is given by RMAP(50) = 4.47 and
RMAP(90) = 1.39. We obtain the estimates for R(50) and
R(90) including 95% credibility intervals as shown in
Table 2.
These values agree well with the empirical findings

from the Danish Diabetes Register [14], where values
slightly below 4 and slightly above 1.5 have been found
for ages 50 and 90 years, respectively.
In the sensitivity analysis with bivariate normal prior

distributions, the MAP estimator changed only slightly
to RMAP(50) = 4.54 and RMAP(90) = 1.38.

Discussion
In this work, we have described how the illness-death
model can be used to obtain information about excess
mortality in case prevalence and incidence are given. It
turns out that the excess mortality can be calculated by
the incidence rate, the prevalence and the temporal
change of the prevalence (see Eq. (4)). In data where
these figures are estimable, insights into the excess
mortality of people with chronic diseases compared to
the people without the disease can be gained.
As applications, simulated data about dementia and

claims data about diabetes have been analyzed. For the
dementia example we estimated the excess mortality
directly and for the diabetes data we formulated a Bayes-
ian approach. Both methods were based on aggregated
data only (age-specific prevalence and incidence rate)

Fig. 4 Simulated age-specific prevalence p of dementia in European
women 1990 (solid black line) and 2010 (dashed black line). For
comparison, the surveyed values in 2000 are plotted as blue dots
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and do not require data from individual subjects. Aggre-
gated data can be found frequently in the literature,
which makes the proposed method suitable for many ap-
plications, especially when the research question is
aimed at population-wide measures. Here, we have
chosen aggregated data about diabetes from the statu-
tory health insurance in Germany based on about 35
million men. Based on the age-specific prevalence in
2009, we used non-informative priors for mortality rate
ratio R and the PDE (7) to estimate the aposteriori likeli-
hood of R given the age-specific prevalence in 2015. In
this way, the PDE can therefore be seen as the data
generating process underlying the prevalence data. In a
sensitivity analysis, we used more informative prior
distributions (bivariate normal) and found that the
estimated values for the mortality rate ratios changed
only slightly. Main reason for this robustness is due to
the large number of people in the prevalence data.

Our approach has two limitations. The first limitation
stems from the fact that Eqs. (3) and (5) are only valid if
migration into and or from the considered population
does not take place or if the prevalence of the chronic
condition in migrants is similar to the prevalence in the
resident population [21]. If migration happens on a
considerable magnitude and if the prevalence in the
migrants is substantially different from the residents,
adoptions to Eq. (3) are possible [21]. The second limita-
tion of our novel approach becomes visible in the simu-
lation study about dementia: The two (or more) cross-
sectional surveys for estimating the change of the preva-
lence should not be separated too much. In our simula-
tion, the surveys should be conducted within a period of
three years (or less) (i.e., ΔT ≤ 3) to have a relative error
below 5%. If the two cross-sections are separated by ten
years (ΔT = 10), the relative error has reached up to
30%. In the diabetes example, the two cross-sections
were separated by six years (ΔT = 6). Based on this, we
expect the relative errors of our estimates R(50) and
R(90) to be about 10%. For comparison, the width of the
credibility intervals for our estimates R(50) and R(90)
have a similar magnitude. Thus, we would conclude a
relative error of 10% in the mortality rate ratio is a rough
estimate of the magnitude of accuracy that can be
obtained from our method applied to these data.
In the current analysis, no attempt has been taken to

examine the effect of smaller population sizes, i.e., how
sampling uncertainty in the age-specific prevalence and
incidence affects the estimates of the excess mortality.
Furthermore, we have not analyzed the robustness of the
estimation methods against misclassification error (i.e.,

Table 1 True and estimated mortality rate ratios

Age True R ΔT = 0.1 ΔT = 0.5 ΔT = 1 ΔT = 3 ΔT = 5 ΔT = 10

Est. R rel. Err (%) Est. R rel. Err (%) Est. R rel. Err (%) Est. R rel. Err (%) Est. R rel. Err. (%) Est. R rel. Err. (%)

65 2.717 2.717 0.01 2.716 −0.06 2.708 −0.32 2.635 −3.0 2.495 −8.2 1.942 − 29

70 2.461 2.461 0.02 2.460 −0.04 2.455 −0.23 2.406 −2.2 2.312 −6.0 1.938 −21

75 2.229 2.229 0.00 2.228 −0.03 2.225 −0.18 2.191 −1.7 2.128 −4.6 1.868 −16

80 2.019 2.019 0.00 2.018 −0.02 2.016 −0.14 1.993 −1.3 1.948 −3.5 1.765 −12

85 1.829 1.829 0.00 1.828 −0.01 1.827 −0.11 1.810 −1.0 1.779 −2.7 1.647 −9.9

90 1.656 1.656 0.02 1.666 0 1.655 −0.07 1.643 −0.76 1.621 −2.1 1.528 −7.7

95 1.500 1.501 0.10 1.502 0.1 1.503 0.18 1.505 0.36 1.511 0.76 1.492 −0.54

Table legend: The estimated mortality rate ratios (Est. R) at different temporal distances between the two cross-sectional studies (ΔT) and different ages (first
column) are compared to the true mortality rate ratios (True R, second column). The difference between the estimated and the true mortality rate ratio are given
in terms of the relative error (rel. Err., in %)

Fig. 5 Contour plot of the posteriori likelihood of the mortality rate
ratio R at ages 50 (abscissa) and 90 (ordinate). The maximum a
posteriori (MAP) estimator is indicated as a black cross

Table 2 Estimated mortality rate ratios for the diabetes data

Age Mortaltiy rate ratio R 95% credibility interval

50 4.47 4.17 4.78

90 1.39 1.33 1.46

Table legend: The estimated mortality rate ratios (R) at ages 50 and 90 with
95% credibility intervals

Brinks et al. BMC Public Health          (2019) 19:844 Page 6 of 7



false positive and false negative rates in input prevalence
and incidence data). Questions about sample sizes and
misclassification are currently analyzed and will be sub-
ject to a future paper providing more technical details.

Conclusion
The described approach is useful to estimate the excess
mortality of a chronic condition from aggregated inci-
dence and prevalence data. The feasibility has been dem-
onstrated in a simulation study about dementia and in
claims data about diabetes in German men.
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