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Abstract

Background: To mitigate air pollution-related health risks and target interventions towards the populations bearing
the greatest risks, the City Health Outlook (CHO) project aims to establish multi-scale, long-lasting, real-time urban
environment and health monitoring networks. A major goal of CHO is to collect data of personal exposure to
particulate air pollution through a full profile that consists of a matrix of activities and micro-environments. As the
first paper of a series, this paper is targeted at illustrating the characteristics of the participants and examining the
effects of different covariates on personal exposure at various air pollution exposure levels.

Methods: In the first campaign, volunteers are recruited to wear portable environmental sensors to record their real-time
personal air pollution exposure and routes. After a web-based social media recruitment strategy, 50 eligible subjects
joined the first campaign in Beijing from January 8 to January 20, 2018. The mean personal exposures were measured at
19.36, 37.65, and 43.45 μg/m3 for particulate matter (PM) with a diameter less than 1, 2.5, and 10 μm, respectively, albeit
with the high spatial-temporal variations.

Results: Unequal distribution of exposures was observed in the subjects with different sociodemographic status, travel
behavior, living and health conditions. Quantile regression analysis reveals that subjects who are younger, less
educated, exposed to passive smoking, low to middle household income, overweight, without ventilation system at
home or office, and do not possess private vehicles, are more susceptible to PM pollution. The differences, however,
are generally insignificant at low exposure levels and become evident on bad air quality days.

Conclusions: The heterogeneity in personal exposure found in this the first CHO campaign highlighted the importance
of studying the pollution exposure at the individual scale. It is at the critical stage to bridge the knowledge gap of
environmental inequality in different populations, which can lead to great health implications.
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Background
Worldwide, cities hold the key to health management
[1], especially in contemporary China. The speed of
urbanization in China is unprecedented. More than
50% of total population were attracted to cities since
2011 [2] and is projected to rise to 71% in 2030 [3].
In contrast, the air quality standards in most cities in
China can hardly meet the needs of urban residents.
Among the various health implications that urban

expansion has brought [4], air pollution is the leading
environmental risk factor for death [5, 6]. Public and
officials are primarily concerned with the fine particu-
late matter (PM) with a diameter of less than 10 μm,
as they can bypass human mucus membrane and
cause a variety of problems, such as asthma, de-
creased lung function, and increased respiratory
symptoms [7]. Worldwide, exposure to fine particulate
matter with a diameter of less than 2.5 μm (PM2.5)
accounts for about 4.2 million premature deaths in
2016 [7].
To mitigate air pollution-related health risks and de-

liver more blue-sky days, large social costs are leveraged.
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For instance, the latest 13th Five-Year Plan of China — a
policy blueprint that will shape China’s economic develop-
ment over the next five years — contains a specific PM2.5

target to tackle urban smog for the first time in the history.
Albeit the progress in alleviating the pollution level, the
long persisted and well-documented inequality in air pollu-
tion exposure among different populations [8] has been
largely neglected in policy design. For instance, Internet
purchases data reveals that richer people are more likely to
invest in expensive air filters to offset the health conse-
quences of pollution [9]. To avoid the polarization of the
citizen interests caused by an unequal distribution of the
burden of pollution, it is a priority to evaluate how popula-
tions experience average exposures and exposure dispar-
ities, and ultimately target interventions towards the
populations bearing the greatest risks.
However, most exposure assessment studies are non-

specific because they rely on pollutant measurements at
fixed-site monitoring stations as the surrogate. In reality,
the personal exposure results from a dynamic process
and a multiplicity of sources, such as inside buildings, in
transit vehicles [10–13], and in the general urban envir-
onment, which are collectively not equivalent to the
concentrations recorded at urban background monitor-
ing sites. An inaccurate quantification of true exposure
may lead to exposure misclassification [14] and consid-
erable uncertainty in health risk estimates [15]. The
availability of Global Positioning System (GPS) and
wearable/portable sensors presents an enormous oppor-
tunity for personal sampling studies by tracking the air
pollution exposure and time-activity patterns at the indi-
vidual level in real time. This approach can reflect the
significant degree of variability over space and time. The
challenges, however, are the high cost of implementation
and the hardness in collecting repetitive measures on
the same group of the population over the term. A re-
cent literature review revealed only 44 studies addressing
personal exposure based on individuals’ trajectory [16].
Under this context, City Health Outlook (CHO) pro-

ject is initiated with the long-term goal of establishing
multi-scale, long-lasting, real-time urban environment
and health monitoring networks. One important object-
ive of CHO is to conduct spatiotemporal personal ex-
posure assessment that allows for a realistic appraisal of
the risks the populations are facing. Here, we report our
first efforts in determining personal exposure using
wearable sensors in the megacity of Beijing under the
auspices of the CHO project. As the first paper of a
series, the aim of this paper is to illustrate the character-
istics of the participants and examine the effects of dif-
ferent covariates on personal exposure at various air
pollution exposure levels. This paper begins with an intro-
duction of the CHO project by overviewing its main objec-
tives in Section 2 and explaining the study protocol in

Section 3. In section 4 and 5, we reported and discussed
the results of the first campaign on air pollution inequality.

Methods
A brief overview of CHO
Founded in January 2017, CHO brings together re-
searchers from multiple disciplines to promote and assess
the human health impacts of air pollution in China. A key
outcome of CHO will be an established protocol for hu-
man exposure assessment that high compliance in sensor
validation, personal sampler wearing, data retrieval, and
validation can be achieved among different experiments.
Beijing is chosen to implement the first few pilot cam-
paigns for a protocol test, considering its pressing urban
health challenges, residents’ high environmental aware-
ness, and location convenience. Other cities in China will
be gradually included to provide good representativeness
of different urban environments. Through the large-scale
implementation of citizen-engaged surveys and cam-
paigns, CHO intends to increase participation by resi-
dents, the private sector, non-governmental organizations,
and community groups in health management, which is
recommended as a new, human-centered urbanization
strategy to protect human health [1].

Environmental monitoring instrument
TE-STR (Tongheng Energy & Environment Technology
Institute, Beijing, China) is a portable environmental
monitoring device, which has an aerosol nephelometer, a
GPS receiver, a humidity, and temperature sensor built
in a 90mm × 90mm × 22mm box with a weight of 150 g
(Fig. 1). Those sensors record the PM1, PM2.5, and PM10

concentrations, temperature, and humidity at 1 min
sampling interval and track the movement trajectory of
carriers with a GPS receiver at 5 s sampling interval. All
logged data can be wirelessly transmitted to the CHO
platform every 30 mins using the integrated 4G model.
The measurement accuracies of TE-STR at different

PM concentrations were calibrated in the Center for
Building Environment Test at Tsinghua University. The
test laboratory employs a 3 m3 dust generation chamber,
with a thorough cleaning and inspection conducted prior
to calibration to ensure clean optics, good-working
mechanical factors, and proper air flow rate. The TE-
STR units were subjected to a TSI 8530 DustTrak II
aerosol monitor test in the chamber at six different
PM2.5 concentrations. For most applications, DustTrak
calibration would be appropriate as it represents a wide
spectrum of ambient aerosols. Each test was run for six
times and the relative standard deviations from the TSI
8530 measurements were recorded (Additional file 1).
We also compared the measurements of three TE-STR
devices simultaneously against the TSI reference in the
outdoor environment (Additional file 1). The results
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indicate that TE-STR tends to overestimate PM2.5 while
underestimate PM1 and PM10, and the R-squared ranged
from 0.49 to 0.66.

Web-based social media recruitment
We recruited healthy adults in Beijing using an opportunis-
tic recruitment approach (Fig. 2). Our recruitment

advertisement was posted on several of the most influential
web-based social networks of China, including Tencent
WeChat, Sina Weibo, and Baidu Baijia. The number of ac-
tive users of WeChat and Weibo is approximately 963
million and 340 million according to the Chinese com-
pany’s first quarter results in 2018. The online application
forms were distributed through project webpage and

Fig. 1 Portable environmental monitoring device TE-STR

Fig. 2 City Health Outlook Project study protocol
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WeChat - a cross-platform communication service (Add-
itional file 2). The interested applicant was asked to an-
swer 12 questions highlighting their sociodemographic
characteristics, travel behavior, and health conditions. We
purposely kept the first questionnaire short to engage a
large candidate pool. This social media promotional strat-
egy turned out to be successful, with over 20,000 times
read and 786 applications received.

Subject screen and training
A more comprehensive follow up survey was conducted
with the 786 applicants to collect detailed information on
sociodemographic characteristics (education, marital status,
income), travel behavior (transport mode, private vehicle
ownership), living conditions (ventilation system, passive
smoking), geolocations (home, work), commute route and
time, and self-reported physician diagnosis of common
chronic diseases (Additional file 3). Our first screening was
then set up on the basis of the inclusion criteria, with the
major determiners being healthy people who are “not af-
fected by cardiovascular disease”, “non-smokers in the age
range of 20-40 years”, “drinking no more than 3 times per
week”, “will live in Beijing for the next two years”, and “full
time workers”. A total of 269 eligible applicants were further
invited to take their physical examination at Tsinghua Uni-
versity and 205 applicants attended.
Our second screen was primarily based on the results of

the cardiopulmonary function. Guided and supervised by
professionals from Peking union medical college hospital, we
tested the cardiopulmonary function, recorded blood pres-
sure and body mass index (BMI) for each subject following a
standardized procedure. Of 73 subjects (36 males and 37 fe-
males) whose cardiopulmonary function is normal, 50 final-
ists (25 males and 25 females) were selected for the first
campaign based on their willingness in participating in
multi-round campaigns and geographic locations of home
and working places. Details on how the physical examination
was performed are illustrated in Additional file 4.
The finalists were invited to Tsinghua on January 7,

2018 for half-day onsite training. Subjects were given de-
tails about study procedures and asked to sign consent.
Immediately after the training, subjects were asked to
start wearing the devices. This study complied with Tsin-
ghua University’s guidelines regarding the participation
of human subjects in research.

Campaign and post-campaign
As our campaign completed on January 20, 2018, all devices
were mailed back with prepaid shipping labels. Six subjects
encountered device replacements and three subjects traveled
out of Beijing for a short period. During the campaign
period, each subject was asked to fill out a daily activity diary,
in order for us to validate the subjects' travel routine
(Additional file 5). After one week, the health examination

reports and customized environment and health analytical
reports were presented to each subject to promote recruit-
ment and retention. Timely feedback to subjects’ activities is
also believed to ensure the quality of data collection.

CHO platform
All logged data can be wirelessly transmitted to the CHO
platform every 30 mins using the integrated 4G model.
Moreover, the platform simplifies the web-based social media
recruitment by automatically sending the questionnaires to
volunteers and receiving their feedback. The platform can
also monitor the number of on-line devices that could help
to ensure the integrity of our data. The detailed information
of CHO platform was presented in Additional file 6.

Statistical analysis
With the collected personal exposure data, two types of
statistical analysis were conducted to analyze the per-
sonal exposure heterogeneity among groups that can be
broadly classified into four categories: separately socio-
demographic status, travel behavior, living conditions,
and health status.
First, we calculated the descriptive statistics (i.e., mean and

standard deviation) for the subjects’ exposure to PM2.5,
PM10, and PM1. We further conducted analysis of variance
(ANOVA) tests of mean personal exposure for different
groups to analyze whether the population means of several
groups are different.
Second, we introduced quantile regression to examine

the effects of different covariates on personal exposure at
various air pollution exposure levels. Although this
method has been widely adopted in a broad spectrum of
fields [17–19], to the best of our knowledge, it has not
been applied in personal air pollution exposure research.
The previous studies have commonly used standard linear
regressions established on the assumption that the average
covariate effect of the predictors on the conditional means
of the response is constant. We will demonstrate that such
an assumption is highly disputable and conceals the com-
prehensive picture of the relationship between an out-
come variable and an input variable [20].
An ensemble of conditional quantile functions was ana-

lyzed by fitting separate bivariate models between individ-
ual exposure and nine characteristics (age, education,
income, commute time, vehicle possession, smoking, ven-
tilation system, BMI, respiratory disease) for quantile
levels 0.1 to 0.9 at the interval of 0.05. Bootstrapping is
used to estimate standard errors and confidence intervals,
accounting for the hierarchical data structure [21]. The
coefficients, which are interpreted as the impact of a one-
unit change of the covariate on the personal exposure (μg/
m3) while holding all other variables constant, will be
compared against those derived from the ordinary least
square (OLS) regression. Since the OLS coefficient
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remains constant across quantiles, the OLS coefficient will
be plotted as a flat line with the confidence interval as two
horizontal lines around the coefficient line. If the quantile
coefficients fall outside of the OLS confidence intervals,
they are significantly different from the OLS coefficients,
and vice versa.

Results
Characteristics of the study population
Sociodemographic characteristics
Of the 50 subjects, their mean age is 30 years old and
the female population is on average two years younger
than the male (Table 1). The subjects are highly edu-
cated with 40% received post-graduate degree and 96%
gained full-time employment. The number of unmarried
subjects almost double the married ones. Middle-high
income class family accounts for 68% of the subjects.

Travel behavior
The subjects’ home and office locations spread over the
urban part of Beijing. Except for five subjects who live out
of the 6th ring road, all the others reside within the 6th
ring road (Fig. 3). Their residential addresses cover 12 out
of 16 Beijing’s districts and their working places are dis-
tributed in nine districts. Sixty percent of the subjects
spent less than an hour to commute from home to work.
The share of subjects with a private vehicle is 30%.

Living condition
Sixty-four percent of the subjects do not suffer from
passive smoking for more than 15 mins per week, with
more females than males. The share of subjects with
ventilation system installed at home or office is 48%.

Health status
Thirty-eight subjects’ body mass index is within the nor-
mal range, but 12 of them are indicated as overweight.
The prevalence of the respiratory disease is 12% in males
and 16% in females. No one reported being diagnosed
with cardiovascular disease.

Descriptive statistics of personal exposure in different
groups
The average personal exposure for all 50 subjects was
19.36, 37.65, and 43.45 μg/m3 for PM1, PM2.5, and PM10,
respectively. Using 25 and 50 μg/m3 as the reference con-
centrations for PM2.5 and PM10 established by the World
Health Organization (WHO) air quality guidelines [22],
the personal exposure is much higher for the recom-
mended fine PM level and slightly lower than that of
coarse PM. The findings on all three types of PM were
similar and will not be particularly mentioned afterwards.
Except for the gender and marital status, significant dif-

ferences in personal exposure were observed (Table 2).

The younger subject group with age under 30 had the
higher mean personal exposure. Subjects with the highest
education in a bachelor’s degree or below were exposed to
more air pollution than those received post-graduate de-
gree. The standard deviation, which quantifies the differ-
ences between the lowest and the highest exposure within
a particular population, shows a wider range in the lower
education level group. The low-middle class experienced
higher mean exposure.
The subjects who spend more time in their one-way

commute to work (more than an hour) were exposed
more. For the fifteen subjects who own private vehicles,
their average PM2.5 exposure was 6.96 μg/m3 lower than
those without. Although all subjects are non-smokers,
those who were exposed to passive smoking for more
than 15 mins per day had significantly higher exposure
level than those who did not. The ventilation system re-
duced the exposure level, as the PM2.5 exposure is
4.89 μg/m3 lower in subjects with ventilation systems op-
erated at home or office. The overweight population had
significantly higher personal exposure than people with
normal weight, and the difference is 10.97 μg/m3 for
PM2.5. Subjects with self-diagnosed respiratory diseases
have lower exposure level than those without.

Quantile regression results
Variables (characteristics) that showed no significant differ-
ences between groups in Table 2 were not included for
quantile regression. Table 3 displays the quantile regression
results at the 0.25, 0.5 0.75, and 0.9 quantiles and their com-
parison with OLS coefficient estimates. Figure 4 displays nine
influence plots that present the relationship between per-
sonal exposure and the most revealing variables in the quan-
tile regression model.
Age negatively correlates with personal exposure, espe-

cially at the upper tail of the personal exposure histogram
distribution. The higher confidence limits are lower than
the OLS estimate for quantile levels higher than 0.7.
Younger subjects are exposed more to PM2.5 pollutants,
and the effect at the 0.9 quantile is 5.5 times stronger than
that at the 0.25 quantile. The influence of education on
personal exposure is negative but only for the high quan-
tiles, whereas no significant effect is observed on the lower
quantiles. Personal exposure in different income groups
did not show an obvious pattern. No significant relation-
ship was observed until the 0.7 quantile, above which per-
sonal PM2.5 first increased with income, followed by an
abrupt drop and a slight increase after the 0.85 quantile.
Among the subjects who commute to work at different

time duration, their coefficients were not significantly
different from zero before the 0.9 quantile. As approxi-
mating to the right end of exposure distribution, longer
commute time dramatically elevates personal exposure.
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Table 1 Characteristics of the study population (% (N)) and the hypothesis of their effects on air pollution exposure

Male Female Total

50%
(25)

50%
(25)

100%
(50)

SOCIODEMOGRAPHIC

Age Younger adults inhale more pollution than older people, as their activity intensity and
metabolic rate is higher. And young people generally care less about self-protection.

≤ 30 48%
(12)

76%
(19)

62%
(31)

> 30 52%
(13)

24%
(6)

38%
(19)

Education Individuals who received a higher education have higher perceptions of air pollution and are
more likely to take proper actions to limit personal exposure to ambient air pollution.

Bachelor’s degree or
below

60%
(15)

40%
(10)

50%
(25)

Post-graduate degree 40%
(10)

60%
(15)

50%
(25)

Marital status Single individuals tend to engage more in outdoor activities and spend more time on leisure
activities than do married individuals, which put them at a higher risk of air pollution exposure.

Single 48%
(12)

84%
(21)

66%
(33)

Married 52%
(13)

16%
(4)

34%
(17)

Annual income, RMB Low-income individuals are more susceptible to pollution threats because of the lack of self-
protective equipment, longer-distance travel, and worse working and living environment.

Low-middle: < 150,000 32%
(8)

36%
(9)

34%
(17)

Middle-high class: >
150,000

68%
(17)

64%
(16)

66%
(33)

TRAVEL BEHAVIOR

Commute time to work, hours Longer duration commuters increase their exposure time to unfiltered air contaminants.

≤ 1 60%
(15)

68%
(17)

64%
(32)

> 1 40%
(10)

32%
(8)

36%
(18)

Own vehicle, yes 40%
(10)

20%
(5)

30%
(15)

Individuals in vehicles are likely to be exposed to more pollution since a car in traffic takes in
and trap pollution from the exhaust of vehicles in front of it. Pedestrians and cyclists have
diluted pollutants due to better airflow.

LIVING CONDITION

Days suffered from passive smoking for more than
15 mins per week

Individuals who are exposed to secondhand smoke are more likely to inhale more pollutants.

0 72%
(18)

56%
(14)

64%
(32)

> 1 28%
(7)

44%
(11)

36%
(18)

Have ventilation system
at home or office

56%
(14)

40%
(10)

48%
(24)

The air cleaning effect of ventilation system will lower the concentration of indoor air
pollutants.

HEALTH STATUS

Body mass index, kg/m2 Overweight or obese adults breathe more air per day than an adult with a healthy weight,
which makes them more vulnerable to air contaminants.

Normal (< 25) 68%
(17)

84%
(21)

76%
(38)

Overweight / Obese(≥25) 32%
(8)

16%
(4)

24%
(12)

Respiratory diseases 12%
(3)

16%
(4)

14%
(7)

Patients with respiratory diseases are more likely to be cautious about bad air quality days and
tend to take more protections.
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Subjects owning private vehicles generally receive less
exposure at all ranks of quantiles, and the air pollution
reduction effect of cars is especially prominent at high
exposure levels.
The effect of passive smoking is positive and the

coefficient increases exponentially after the median
quantile. A high difference of 17.56 μg/m3 could be
observed between populations who receive passive
smoking and those who do not when the total expos-
ure level is high. The effect of the ventilation system
is complex, as the coefficients increased stably from
the left tail to the 0.6 quantile and then started drop-
ping till the 0.9 quantile but increased sharply at ex-
tremely far right quantile (Fig. 4).
In terms of the influence of health status on per-

sonal exposure, overweight subjects received 4.15 μg/
m3 higher PM2.5 exposure at a low exposure level
(at the 25% quantile) and 36.17 μg/m3 more at a
high exposure level (at the 90% quantile). Lastly, the
presence of respiratory diseases in the subjects leads
to fairly constant coefficient values before the 0.8
quantile but increases towards at the distribution’s
right tail.

Discussions
Personal exposure disparity
By testing the personal exposure differences among
different sociodemographic groups, no significant
difference was observed between the male and

female, and the married and single in our subjects.
Nonetheless, age, education, and income are promin-
ent in influencing the level of exposure to air
pollutants.
The impacts of age and education on PM exposure are

not significant when the overall exposure level is low but
become prominently negative as the exposure level ele-
vates. Younger subjects experiencing elevated levels of
air pollution may be attributed to their high activity in-
tensity and extended outdoor activities. Education has
been long recognized to have a profound positive impact
on population health [23], which is also evident in redu-
cing PM exposure level in our study. People with higher
education are better aware of the adverse effects of
air pollution and take proper self-protection actions
[24], such as checking daily air quality index and
avoiding outdoor activity or wearing respirators when
air quality is bad.
We also noticed income inequalities in PM expos-

ure, but there is no clear pattern on how income af-
fects exposure as revealed by the quantile regression.
Low-income subjects are most likely active com-
muters with the dominant transport mode as cycling,
bus, light-rail train, and walking [21, 25]. Those
modes with direct exposure to traffic increase the in-
haled dose of air pollution [26]. But this negative re-
lationship reversed after the 0.85 exposure quantile. It
is unclear whether this is due to the small subject
samples and needs further study.

Fig. 3 Distribution of the 50 finalists’ primary home and working address in Beijing during our first campaign. Data sources: ring road, subway
network, and Beijing district boundary data were obtained from OpenStreetMap
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Table 2 Statistic parameter and ANOVA tests of mean personal exposure for different groups

Mean ± STD (μg/m3)

PM2.5 PM10 PM1

SOCIODEMOGRAPHIC

Gender *

Female 35.85 ± 56.28 41.25 ± 60.81 18.36 ± 29.07

Male 40.38 ± 55.45 46.73 ± 61.65 20.80 ± 25.70

Age *** *** ***

≤30 38.55 ± 59.36 44.41 ± 64.42 19.72 ± 29.65

> 30 37.65 ± 49.80 43.60 ± 55.94 19.48 ± 23.33

Education *** *** ***

Bachelor’s degree or below 44.40 ± 66.40 51.12 ± 71.86 22.67 ± 32.76

Post-graduate degree 31.64 ± 40.96 36.65 ± 46.47 16.40 ± 19.70

Marital status

Single 38.93 ± 58.76 44.65 ± 63.72 19.94 ± 29.07

Married 36.98 ± 50.57 43.16 ± 56.92 19.10 ± 24.26

Annual income, RMB *** *** ***

Low-middle: < 150,000 43.64 ± 67.20 49.52 ± 71.36 22.58 ± 34.39

Middle-high class: > 150,000 35.46 ± 48.97 41.36 ± 55.34 18.14 ± 22.93

TRAVEL BEHAVIOR

Commute time to work, hours *** *** **

≤ 1 36.58 ± 55.20 42.08 ± 60.14 18.96 ± 28.28

> 1 41.14 ± 57.01 47.73 ± 63.19 20.83 ± 25.69

Own vehicle *** *** ***

yes 33.34 ± 48.20 38.66 ± 54.79 16.77 ± 22.67

no 40.30 ± 58.78 46.44 ± 63.77 20.86 ± 29.11

LIVING CONDITION

Days suffered from passive smoking for more than 15 mins per week ** *** *

0 37.06 ± 58.60 42.56 ± 63.38 19.11 ± 29.37

> 1 40.25 ± 50.65 46.83 ± 57.34 20.56 ± 23.45

Have ventilation system at home or office *** *** ***

yes 35.58 ± 57.05 40.80 ± 61.51 18.37 ± 30.03

no 40.47 ± 54.78 46.94 ± 60.99 20.71 ± 24.87

HEALTH STATUS

Body mass index, kg/m2 *** *** ***

Normal (< 25) 35.40 ± 53.69 40.91 ± 58.87 18.16 ± 27.08

Overweight / Obese(≥25) 46.37 ± 61.14 53.38 ± 67.03 23.91 ± 27.86

Respiratory diseases * ** *

yes 34.51 ± 46.60 39.67 ± 52.03 17.77 ± 21.18

no 38.21 ± 55.50 44.21 ± 61.03 19.67 ± 27.73

Note: * denotes significance level < 0.05; **significance level < 0.01; ***significance level < 0.001. The highest personal exposure concentration in each group was
shaded in grey
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Travel behavior
Individuals who work indoor and commute to work re-
ceive a substantial portion of their daily dose of air pollu-
tion in their working environment and during commuting
activities. In our study, commute time, passive smoking,
possession of a personal vehicle, and ventilation systems
are presented as important factors in determining the ex-
posure to air pollutants.
Traffic-related air pollution contributes significantly to

commuters’ daily PM2.5 exposure [27]. Without a doubt,
longer commuting time accumulates the inhaled dose, re-
gardless of the different transport modes. A one-year aero-
sol characterization study in Beijing presented that the
differences in PM2.5 concentrations on the 4th ring road
were 44 μg/m3 higher than rural sites [28]. Nonetheless,
our study reveals that differences in PM exposures across
work commute time groups were small and only became
obvious when high exposure level is reached.

Table 3 Coefficient estimates of OLS and quantile regression at
different quantiles

OLS Quantile

0.25 0.5 0.75 0.9

Age −2.65a −1.70a − 4.59a −4.70a −9.35a

Education −1.72a 0.85a 1.19a −0.43 −6.90a

Income −0.32 −0.53 0 −1.03a −5.25a

Commute time 4.54a 0.05 −0.91a −1.78a 2.03

Vehicle −15.99a −6.51a −15.79a − 14.55a −48.54a

Smoking 7.93a 1.70a 2.22a 5.70a 17.56a

Ventilation 0.87 −0.30a 2.13a 1.04a −4.52a

BMI 8.36a 4.15a 12.75a 8.83a 36.17a

Respiratory 5.35a 1.33a 4.06a 4.20a 27.87a

Note: adenotes significantly different coefficient from zero at the 5%
significance level

Fig. 4 The effects of sociodemographic, travel behavior, living conditions, and health status on personal PM2.5 exposure. Each dot on the black
lines represents quantile regression coefficients and grey shadings indicate 95% confidence intervals as a function of the quantile level. The red
horizontal solid and dashed lines depict the OLS coefficient estimates and the associated 95% confidence intervals, respectively
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The occupancy of private vehicles results in lower PM
exposure. Although most air intake filters in cars have
relatively low efficiency and pollutants can penetrate
through openings such as window and door seals, with
proper vehicle operating conditions and the equipment
of cabin recirculation filters, the reduction of in-cabin
PM exposure can still be significant [29]. Driving with
the window closed is more protective against traffic-
related PM exposure than other transport modes [27],
especially on high pollution days.

Living conditions
Tobacco smoking is a major indoor PM source where
smoking is permitted [30]. As expected, our results show
that subjects exposed to secondhand smoking inhaled
more air pollution than those who did not, although the
difference is marginal (3.19 μg/m3). In contrast to smok-
ing that elevates the indoor pollution level, ventilation
systems reduced 4.89 μg/m3 exposure concentration on
average. However, the air cleaning effect varied at differ-
ent exposure levels, which was insignificant at low ex-
posure levels and became evident at medium-high levels.
One study reported that a ventilated classroom had
PM10 concentrations on average 66% lower than those
measured in the unventilated control classroom [31].
Nearly half of the subjects have a ventilation system in-
stalled at home or office. In China, with the increasing
public awareness of air pollution, the trend of opting to
purchase an air ventilation system to regulate indoor air
quality will keep growing in the future.

Health status
Our data also suggests a lower exposure level in subjects
with existing respiratory diseases. Considering their sen-
sitivity to air pollutants, those subjects may take more
effective personal interventions to decrease their suscep-
tibility to air pollution [32]. The overweight subjects
were exposed to the environment with higher ambient
PM concentration. This may be attributed to the fact
that overweight people are more prevalent among indi-
viduals of lower education [33], who tend to have less
health awareness or live and work in environments with
worse air quality.

Health implications of air pollution inequality
The most prominent outcome of the disparity in individ-
uals’ pollution exposure could be health inequalities, es-
pecially in individuals or communities with lower
socioeconomic position [21]. Exposure to disproportion-
ately high levels of PM can lead to various health-
damaging levels. For example, the WHO suggests that a
100 μg/m3 increase in the daily average concentration of
PM10 can result in a 7% increase in daily mortality and
an 8% increase in daily hospital admission [34]. A 10 μg/

m3 increase of PM10 was related with statistically higher
risk of death of 0.64% for older populations (> = 65
years) and 0.34% for younger populations [35]. In
London, a 1.1 μg/m3 increase in PM2.5 was associated
with a decline in some measures of cognitive function in
elderly people [19], and a 2.2 μg/m3 difference in PM2.5

may increase the likelihood of low birth weight [36].
However, most environmental inequality studies were in
North America and Europe. The quantifications have
not been tested widely in China. Although numerous
scientific studies have shown a strong and consistent
linkage of particle pollution exposure to a variety of
health problems, the evidence regarding susceptibility,
vulnerability, and modifying factors is inconclusive. As
China is experiencing a transition of the disease patterns
from infectious disease to non-communicable disease,
bridging the knowledge gap of environmental inequality
in different populations of China will have great health
implications, such as aid design regulations that target
local air quality control efforts to specific populations.

Limitations
Although the first CHO campaign has reached its goals,
there were some unavoidable limitations. The main limi-
tation is the small subject sample size, and the subjects
are healthy adults, which may hinder the interpretation
of results. This is partly due to the cost of portable air-
quality sensors that restricts the implementation on a
large population. Although the price is much reduced,
the unit we used is around USD 300. Also, considering
that the campaign should be conducted by subjects dur-
ing the same period to allow a fair comparison, it is
quite challenging to recruit thousands of subjects at one
time. Thus, conclusions drawn out of this study should
be applied conservatively. One recommendation for
comparing characteristics between groups of subjects in
small studies is looking at the degree of difference [37].
For small differences, it is hard to determine whether
the exposure difference is due to the subjects’ character-
istics or simply chance. However, a large difference is
unlikely to all be due to chance.
Another major limitation is what the subjects collected

are ambient pollution concentration, not inhaled dose.
Most subjects carried the devices in their backpacks or
handbags, which measures the ambient concentration at
the waist height. In epidemiological studies, the amount
of pollution reaching the lungs depends on the inhal-
ation dose, which is not only related to the ambient pol-
lution concentration but also affected by physical
activity and ventilation rates [38]. Ideally, a facemask is
used to measure the dose but is uncomfortable to wear
over a few days. Various methods have been proposed to
estimate the inhaled dose based on physical activity type
[39], energy expenditure [40], heart rate [41, 42], and
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breathing rate [43, 44]. In our campaign, besides the en-
vironmental sensors, subjects also carried an ActiGraph
GT3X (Pensacola, Florida) accelerometer simultaneously
to monitor human rest and physical activity levels. It is
thus feasible to estimate the inhaled dose for individuals
from sensor recorded ambient concentrations using the
above methods.
A third limitation is the challenge to have low-cost

sensors reach the data quality of high-end instrument.
Information provision regarding low-cost sensor per-
formance is not prevalent and just emerging [45]. The
sensor manufacturer of TE-STR provided its perform-
ance data in a controlled environment, but has not eval-
uated the data quality and stability over long-term
deployment in the field with varying environmental con-
ditions. The differences between laboratory calibration
and field performance evaluation are also witnessed in
our study. It is recommended that low-cost sensor data
can be used to obtain relative and aggregated informa-
tion about the ambient air quality [45]. Thus, findings
from this study should be used carefully, and we recom-
mend using the relative comparison among exposure
levels of different population groups instead of the abso-
lute differences.

Conclusion
The present study summarizes the project overview,
study design, and the results of the first campaign of
CHO project. The preliminary data analysis highlighted
the unequal distribution of PM exposures among differ-
ent populations, especially in bad air quality conditions.
The limitations in sample size also suggests that future
campaigns should be encouraged and findings could
guide the development of protocols to increase partici-
pation in the future.
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