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A spatiotemporal mixed model to assess
the influence of environmental and
socioeconomic factors on the incidence of
hand, foot and mouth disease
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Abstract

Background: As a common infectious disease, hand, foot and mouth disease (HFMD) is affected by multiple
environmental and socioeconomic factors, and its pathogenesis is complex. Furthermore, the transmission of
HFMD is characterized by strong spatial clustering and autocorrelation, and the classical statistical approach
may be biased without consideration of spatial autocorrelation. In this paper, we propose to embed spatial
characteristics into a spatiotemporal additive model to improve HFMD incidence assessment.

Methods: Using incidence data (6439 samples from 137 monitoring district) for Shandong Province, China,
along with meteorological, environmental and socioeconomic spatial and spatiotemporal covariate data, we
proposed a spatiotemporal mixed model to estimate HFMD incidence. Geo-additive regression was used to
model the non-linear effects of the covariates on the incidence risk of HFMD in univariate and multivariate
models. Furthermore, the spatial effect was constructed to capture spatial autocorrelation at the sub-regional
scale, and clusters (hotspots of high risk) were generated using spatiotemporal scanning statistics as a predictor. Linear
and non-linear effects were compared to illustrate the usefulness of non-linear associations. Patterns of spatial effects
and clusters were explored to illustrate the variation of the HFMD incidence across geographical sub-regions. To validate
our approach, 10-fold cross-validation was conducted.

Results: The results showed that there were significant non-linear associations of the temporal index, spatiotemporal
meteorological factors and spatial environmental and socioeconomic factors with HFMD incidence. Furthermore, there
were strong spatial autocorrelation and clusters for the HFMD incidence. Spatiotemporal meteorological parameters, the
normalized difference vegetation index (NDVI), the temporal index, spatiotemporal clustering and spatial effects played
important roles as predictors in the multivariate models. Efron’s cross-validation R2 of 0.83 was acquired using our
approach. The spatial effect accounted for 23% of the R2, and notable patterns of the posterior spatial effect
were captured.

Conclusions: We developed a geo-additive mixed spatiotemporal model to assess the influence of meteorological,
environmental and socioeconomic factors on HFMD incidence and explored spatiotemporal patterns of such incidence.
Our approach achieved a competitive performance in cross-validation and revealed strong spatial patterns for the HFMD
incidence rate, illustrating important implications for the epidemiology of HFMD.

Keywords: Spatiotemporal mixed model, Spatial effect, Non-linear effect, Hand-foot-mouth disease, Spatiotemporal
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Background
Hand, foot and mouth disease (HFMD) is a common infec-
tious disease that mostly occurs in children younger than
5 years of age. This disease is caused by EV71, CoxA16
and other viruses, and it can lead to symptoms in the hand,
mouth or foot, including fever, blisters, and ulcers. It can
also cause aseptic meningitis, encephalitis, neurogenic
edema and other symptoms in some critically ill patients
and may even be life threatening [1]. Therefore, via investi-
gation of the associations of the influencing factors, such
as meteorological, geo-environmental and socioeconomic
variables, with the incidence of HFMD, the critical risk fac-
tors and the difference of risk in regions can be identified
and provided for decision-making support of prevention
and control measures against this disease.
Existing studies have shown that the incidence of

HFMD is related to meteorological, geo-environmental
and socioeconomic factors. Meteorological factors, such
as air temperature and humidity [2], rainfall [3], and wind
speed [4], have important effects on the incidence of
HFMD. The short-term El Niño effect was reported to be
associated with the incidence and spread of HFMD [5].
Socioeconomic factors, including population density, the
number of industrial companies and the ratio of students
in a population, were identified as important HFMD risk
factors [6]. The gross domestic product (GDP) was found
to make a great contribution to the incidence of HFMD
[7]. Geographical environmental factors, such as the nor-
malized difference vegetation index (NDVI), population
density, land cover types and roadway density, were dem-
onstrated to affect the incidence of HFMD [8, 9].
In terms of modeling methods, geographically weighted

regression [10], boosted regression tree analysis [11], the
generalized additive model [12], and the Bayesian network
[13], among others, were used to investigate the relation-
ship between HFMD and influencing factors. Some existing
studies [10, 14, 15] used linear regression to model the rela-
tionship between influencing factors and incidence. Others
showed significant non-linear relationships [4, 16] between
the factors and incidence and the effect [7] of interactions
between different factors on the incidence. In addition,
many studies primarily focused on a single dimension of
time or space and not on a systematic combination of the
two. The studies on temporal factors include investigations
of the seasonal changes of meteorological parameters [4,
15] or identification of the delay effects of influencing fac-
tors [17]. The resulting analyses or the models used in these
studies often ignored the influence of differences in the
areas or spatial autocorrelation on the disease incidence.
Spatial models mostly focused on the investigation of the
spatial autocorrelation and clustering of the incidence and
ignored the temporal effect. Meanwhile, spatiotemporal
studies [3, 18, 19] were based on spatiotemporal scans to
detect the clustering of HFMD incidence. This widely used

method could discover the pattern of HFMD spatiotempo-
ral propagation, but combining it with other factors, such
as meteorological and geo-environmental parameters, in
these methods was difficult.
In this study, we propose a mixed spatiotemporal model

that evaluates the impact of meteorological, socioeco-
nomic and geo-environmental factors on the incidence of
HFMD and predicts the incidence risk in the target area
within a certain period of time. This model uses geo-
additive regression to establish a non-linear relationship
between influencing factors and disease incidence and sys-
tematically integrates the spatial and temporal autocorrel-
ation and spatiotemporal clustering factors; the
contribution of meteorological, environmental, and land-
use patterns, the effect of spatial and temporal autocorrel-
ation, and the hotspot output of disease for a robust pre-
diction of HFMD incidence are illustrated. Using cross-
validation, our approach demonstrated the improvement
in assessment of the disease risk.

Methods
Study region
Shandong Province is located between 34° 25′ and 38° 23′
north latitude and between 114° 36′ and 122° 43′ east longi-
tude (Fig. 1). It is an eastern coastal province of China bor-
dered by the North China Plain to the west. Its eastern part
is the Shandong Peninsula, which extends into the Yellow
Sea. The total area of Shandong Province is 158,000 km2.
Shandong has a population of nearly 98 million and is
ranked second in China in terms of population. Shandong
has a temperate continental monsoon climate with rain and
heat in the same quarter. The average annual temperature is
13 degrees Celsius; rainfall is concentrated in the summer,
and the annual rainfall is between 550 and 950 mm.

Incidence rate
From the Chinese Center for Disease Control and Preven-
tion, weekly disease incidence reports for a total of 138
districts in Shandong for 47 weeks beginning May 2008
were obtained for this study. These data were reported by
the health departments of the districts. We analyzed the
weekly incidence data for each district and county (each
district and county is represented by its center point).

Influencing factors

1) Meteorological station data

Meteorological data were obtained from the China Me-
teorological Data Network (http://data.cma.cn/en). Data
were collected in the same period as the HFMD incidence
data and consisted of the observation data of 677 me-
teorological stations nationwide, including daily average
temperature (°C), daily maximum temperature (°C), daily
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minimum temperature (°C), relative humidity (%), air
pressure (hpa) and wind speed (m/s), among others. In
the ArcGIS software (ESRI Inc., Redlands, California, the
United States), we used the inverse distance weighting
method to calculate the weekly average meteorological pa-
rameters for each district in Shandong Province.

2) Socioeconomic data

Based on the 2008 statistical yearbook (http://www.stats-
sd.gov.cn/), we obtained socioeconomic statistics, including
the GDP (Ten Thousand Yuan), the ratio (%) of primary
school students in the population and the number of per
capita hospital beds, among other statistics. These socio-
economic statistics characterized the HFMD transmission
by communication.

3) NDVI data

Derived from the moderate-resolution imaging spectrora-
diometer (MODIS), the normalized difference vegetation
index (NDVI) reflects the coverage of surface vegetation as
an environmental indicator for HFMD. We used the
MODIS images of four quarters of 2009 with a resolution
of 1 km to derive the NDVI. The NDVI values within each
district were averaged based on the district’s area and the
seasonal intervals to represent this district’s seasonal NDVI.

4) Land cover data

In this study, the 2009 global land cover raster dataset
was obtained from GlobCover (http://due.esrin.esa.int/

page_globcover.php) with a resolution of 230 m. The
study area data were identified and classified into water
bodies, man-made areas and natural areas. For each dis-
trict, we calculated the proportion of each cover type,
which was then used as the land cover factor in the
model.

5) Road network data

Dense roads typically mean higher population move-
ments, higher economic levels and higher air pollution,
whereas a sparse road network density indicates remote
distribution of residential locations and underdeveloped
economic levels (most likely lower air pollution). We
gathered the road network data from OpenStreetMap
(http://www.openstreetmap.org/) and calculated the road
length (km) of the main roads and secondary roads
within each district.

Spatiotemporal cluster output
This study used the spatiotemporal scanning statistical
method [20] to obtain the spatiotemporal clustering data
of HFMD. This method used a dynamic cylindrical win-
dow in the study area to conduct scanning analysis of
the incidence of disease, with the bottom of the cylinder
representing the scanned area and the height represent-
ing the scanning time length. The difference between
the number of disease occurrences in the window and
that of the area outside the window is summarized after
each change, and the log likelihood ratio is used to test
whether the difference is caused by random variation.
Windows of statistical significance indicate this region’s

Fig. 1 Study region with the sample district’s central location and Thiessen polygons constructed for spatial effects

Li et al. BMC Public Health  (2018) 18:274 Page 3 of 12

http://www.stats-sd.gov.cn/
http://www.stats-sd.gov.cn/
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://www.openstreetmap.org/


clustering trend of the incidence rate, revealing “hot-
spots” of disease occurrence. In this study, the data of
HFMD in 47 districts were calculated using the space-
time permutation method [20] in the SaTScan software
(https://www.satscan.org). Five hotspots were calculated,
and the three most significant hotspots were classified as
significant clusters. The other two types of hotspots
were classified as sub-significant clusters, and the rest
were classified as insignificant clusters.

Modeling approach
The HFMD incidence is in line with the Poisson distri-
bution, and the modeling frame is constructed using the
following formula:

log μs;t

� �
¼ Log Psð Þ þ log λs;t

� � ð1Þ

λs;t ¼ exp β0þ f r s; tð Þ þ
Xk

i¼1
sðxi s; tð Þ

� �

þfac cs;t
� �þ f s r sð Þð Þ þ f re r sð Þð Þ þ ε

ð2Þ
where s and t represent the spatial unit (sub-region) and
the time point (weekly), respectively; μs,t represents the
number of HFMD cases for region s and week t,
μs,t~Poisson(λs,t); Ps represents the population offset to
adjust for the difference in the population; λs,t is the in-
cidence rate; β0 represents the average incidence rate for
Shandong Province; xi(s,t) represents spatial or spatio-
temporal covariates (meteorological, environmental and
socioeconomic); s(…) is an additive non-linear function;
cs,t is the output of a spatiotemporal cluster; fac(…) is
the factor level for the cluster; fs(r(s)) represents the
structured spatial effects; fre(r(s)) represents the un-
structured spatial effects; and ε represents the residuals.
We used the first Julian day of each week (w) as a

non-linear temporal variable in the model to represent
the seasonal effect of HFMD incidence across a year.
For the spatial (e.g., socioeconomic factors) or spatio-

temporal (meteorological factors) covariates, the non-
parametric additive method was used to model the non-
linear associations (the Additional file 1).
The spatial effect aims to capture the influence of neigh-

boring regions that was not captured by the available covar-
iates. The spatial effect represents spatial autocorrelation
between discrete units such as polygons. In practice, spatial
effects may exhibit a strong spatial structure, and they may
sometimes be due to the influence of randomness. Thus,
the separation of spatial effects between different sources is
necessary for modeling [21]. Moreover, when spatial ran-
dom effects account for spatial autocorrelation not ex-
plained by spatial covariates, such effects are specified as
structured spatial effects. If structured spatial random ef-
fects cannot fully explain spatial correlation, the additive

unstructured random effect can be added to the model to
reflect the remaining local spatial variation [22]. See the
Additional file 2 for details about spatial effect modeling.
We employed restricted penalized maximum likeli-

hood to solve the spatiotemporal mixed-effect model
(Eq. (2)). The BayesXsrc and BayesX packages were used
to solve the generalized additive model [23, 24] in the R
(version 3.3) statistics software. Furthermore, we used
the rgdal and spdep packages to generate the Thiessen
polygons (Fig. 1).
The contribution of each covariate selected was evaluated

in the univariate and multivariate models. Efron’s pseudo
R2 [25] and CV R2 were calculated to measure the count
output, and the corresponding residual plot was examined
for potential patterns. For validation, we conducted 10-fold
cross-validation (CV) (see the Additional file 3 for details).

Results
Summary of HFMD cases and correlation with influencing
factors
In total, 6439 weekly samples of HFMD cases were collected
from 137 monitoring districts. Each sample included the
week index (starting from May 1, 2008, 47 weeks) and the
number of cases within the week with the corresponding
spatial and spatiotemporal covariates generated. The weekly
mean of the HFMD incidence rate was approximately 0.9
per 10,000 population. The mean weekly incidence rate
regularly varied with time, and Fig. 2 presents the temporal
variation of the mean incidence rate from May 2008 to
March 2009 (higher incidence rate in summer and early fall
vs. in winter and spring). Table 1 presents the Pearson’s cor-
relation of each covariate with the HFMD incidence rate.
The results show a weak correlation ranging from − 0.23 to
0.14, illustrating a possible low estimation performance
using linear models for predicting the incidence rate. Thus,
non-linearity can better reflect the associations between the
influencing factors and the HFMD incidence.

Effects of influencing factors and spatial variation and
clusters
The complex non-linear associations between influencing
factors and the HFMD incidence rate were explored in
univariate models (Fig. 3) and multivariate models (Fig. 4).
Table 1 shows the Pearson’s correlation between the influ-
encing factors and the HFMD incidence rate, the pseudo
R2 in the univariate models, and each factor’s contribution
in the multivariate models. Figure 5 shows the trend of
the mean incidence with those of spatiotemporal meteoro-
logical factors to illustrate their association.

Meteorological factors
The Pearson’s correlation results and non-linear associa-
tions in the univariate models showed that the HFMD
incidence generally increased with an increase (Fig. 3-f,
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g, h) in relative humidity and air temperature, and that
the incidence decreased with an increase in air pressure
(Fig. 3-i). Figure 5 shows that the temporal trends of the
weekly mean air temperature, relative humidity and
wind speed were basically similar to that of the HFMD
incidence rate, and the temporal trend of air pressure
was opposite the rate’s trend.
Non-linearity (Fig. 3) captured the complex associations

that varied with different value ranges of the meteoro-
logical factors and better captured the observed associ-
ation. The sensitivity test showed that non-linearity
improved the model’s performance by 14% in Efron’s R2

(0.73 in the linear model vs. 0.87 in the additive model).
Although each meteorological factor showed a statistically
significant complex non-linear association with the
HFMD rate, only two factors (lowest air temperature and
wind speed) were selected in the multivariate model
(Fig. 5), accounting for 3.5% of the variance (Table 1).

The result (Fig. 3-g) shows that the minimum daily
temperature and the risk of disease presented a locally
positive association (slope > 0) for the value range
smaller than 20 °C for the temperature. The wind speed
was shown to be generally positively correlated with
HFMD incidence. In addition, as seen in Fig. 3-h, the ef-
fect of wind speed on HFMD was found to be locally
weakened and even inversed when wind speed was high.
On average, the atmospheric pressure was negatively as-

sociated with HFMD incidence; a lower level of pressure
might weaken the human immune system’s strength, thus
increasing the vulnerability to HFMD [26].

Green space
As an environmental factor, the NDVI indicates the
green space. In total, the NDVI presented a weak linear
association with the incidence, but its non-linear associ-
ation is complicated (first locally positive and then negative

Fig. 2 Temporal variation of the incidence from May of 2008 to March of 2009

Table 1 Correlation and variance explained by the covariate

Covariate Pearson correlation Efron’s pseudo R2 in
univariate model

Contribution to psudo R2 in
multivariate model

Week id −0.23 0.10 33.4%

Air pressure −0.11 0.03 –

Lowest air temperature (°C) 0.14 0.04 0.4%

Higest air temperature (°C) 0.14 – –

Relative humidity (%) 0.07 0.02 –

Wind speed (m/s) 0.08 0.01 3.1%

Road density 0.15 0.05 –

GDP 0.11 0.03 –

Proportion of primary school students 0.01a 0.02 –

Number of hospital beds per capita 0.19 0.06 –

Artificial coverage ratio 0.16 0.15 –

NDVI −0.04 0.04 4.3%

Spatiotemporal cluster 0.12 0.02 23.0%

Spatial effect 0.22 23.0%

Total pseudo R2 87.2%
aindicates spatistical insignificance
-indicates no use of the covairate in the multivariate model
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Fig. 3 Non-linear association between spatiotemporal covariates [week id (a), GDP (b), proportion of primary school students (c), number of
hospital beds per capita (d), artificial coverage ratio (e), relative humidity (f), lowest air temperature (g), wind speed (h), air pressure (i), NDVI (j)
and roadway length (k)] and incidence of HFMD in the univariate models (shade area indicating 95% confidence intervals)

Fig. 4 Non-linear association between spatiotemporal covariates [week id (a), lowest air temperature (b), wind speed (c) and NDVI (d)] and
incidence of HFMD in the multivariate models (shade area indicating 95% confidence intervals)
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associations), as shown in Fig. 3-j. In the multivariate
model, the NDVI explained 4.3% of the variance.

Socioeconomic factors
The socioeconomic factors include GDP, the proportion
of primary school students and the number of hospital
beds per capita, which are spatial covariates without
temporal variation. Except for the proportion of primary
school students, the socioeconomic covariates were sig-
nificantly positively associated with the HFMD inci-
dence. In particular, the number of hospital beds per
capita accounted for 6% of the variance in the univariate
model, illustrating its important influence on the inci-
dence. In the multivariate model, no socioeconomic fac-
tors were selected as predictors.

Land use and traffic factor
As the land use indicator, the artificial coverage ratio
was extracted to reflect the land use pattern, accounting
for 15% of the variance in the univariate models. A road-
way length within the buffering distance of 5 km indir-
ectly indicated the traffic volume and related air
pollution. It is observed to be significantly positively as-
sociated with the HFMD incidence rate. The results of
the univariate model (Fig. 3-k) presented a general posi-
tive association with the HFMD risk.

Temporal effect and spatiotemporal clusters
As shown in Fig. 2, the incidence presents a strong tem-
poral pattern, with a high incidence in summer and a
low incidence in winter (basically in line with the influ-
ence of air temperature). The temporal indicator (weekly
index) accounted for 10% of the variance in the univari-
ate model and 33.4% in the multivariate model. The

scanning statistics output also presented strong spatio-
temporal patterns. The clusters were used as the factor
variable in the model (accounting for 23% of the vari-
ance), and the results (Fig. 6) showed differential inter-
cept coefficients for the moderate and high hotspots,
naturally illustrating a much higher risk for the highest
cluster hotspot.

Spatial effect
The spatial effect played an important role, explaining
23% of the variance in the multivariate model (Table 1).
Figure 7 presented spatially distributed patterns of
spatial effect in the results.

Validation
Efron’s R2 is 0.87, with a CV R2 of 0.83 in the 10-fold
cross-validation. Only six predictors were selected as the
predictors in the multivariate model. The six predictors
included two spatiotemporal meteorological covariates

Fig. 5 Temporal variations of spatiotemporal covariates (mainly meteorological variables) with HFMD rate

Fig. 6 Differential intercept coefficients for spatiotemporal clusters
(no cluster as reference factor)
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(lowest air temperature and wind speed), the NDVI, the
spatial effect, the spatiotemporal cluster output and the
weekly index. The results illustrate the strong spatiotem-
poral characteristics of the distribution of the HFMD in-
cidence rate. Figure 8 shows no notable pattern in the
residual plot of the observed HFMD incidence rate, il-
lustrating the major variation captured by our approach.

Discussion
As a gastrointestinal infectious disease, HFMD is caused
by the virus of the enterovirus genus (group) that

exhibits strong transitivity. HFMD is mainly transmitted
by nasopharyngeal secretions such as saliva or nasal
mucus, by direct contact, or by fecal-oral transmission.
Its latent infection is high and can cause large epidemics
in short periods of time [27]. The transmission paths are
complex and affected by multiple factors. We studied
the complex associations between influencing factors
and the HFMD incidence rate using the non-linear mod-
eling approach with embedding of spatial effect.
Meteorological factors have significant influences on

the HFMD incidence rate [28]. Our results are consist-
ent with previous studies on the influence of air
temperature [2] and relative humidity [2, 12]. The exact
mechanism related to the association of meteorological
parameters with HFMD incidence is not very clear. It is
generally assumed that meteorological parameters affect
HFMD transmission and then its incidence rate. Several
factors, such as pathogen infectivity, human behavior
patterns, and immune system fluctuations, were pro-
posed to account for such associations [29].
Our results provide the informative non-linear associa-

tions of the influencing factors with HFMD risk and such
non-linear association consists of multiple linear associa-
tions corresponding to different value ranges of the covar-
iate in the additive models (the Additional file 1). Previous
studies identified a non-linear association between relative
humidity and the risk of HFMD. Zhang et al. [4] found ex-
treme values of 45% (minima) and 85% (maxima), and the

Fig. 7 Spatial effects across Thiessen polygons

Fig. 8 Residual plot for the observed HFMD rate
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change between the extreme values indicated a linear as-
sociation, with the risk of disease occurrence increasing
with increased humidity. This view was also supported in
the studies by Chen et al. [12] and Nguyen et al. [17]. A
possible explanation for this finding is that the entero-
virus’ survival is generally assumed to be proportional to a
low-moderate relative humidity level between the temper-
atures of 20 °C and 33 °C [30] and favored by higher mod-
erate humidity because the virus can persist longer on
inanimate surfaces [31]. Furthermore, our study found an
extremum near 70%, and an increase in relative humidity
in the range of 70% to 80% led to decreased disease occur-
rence, which is similar to the results of Urashima et al.
[32]. The period from September to November is associ-
ated with relatively high humidity and is the season with a
low incidence of HFMD (Fig. 5); there is a negative correl-
ation between relative humidity and incidence in this sea-
son. Liao et al. [15] suggested that the virus was inhibited
after the increase in relative humidity reached a threshold,
thereby reducing the risk of disease.
For the non-linear association between the minimum

daily temperature and HFMD incidence, there are two po-
tential reasons: (1) virological evidence shows the
temperature-sensitive nature of enteroviruses and other
human enteric viruses [33, 34], and (2) more outdoor ac-
tivities in moderately warmer weather increase close con-
tact between individuals, thus enhancing the HFMD
transmission. Furthermore, our result in the univariate
model identified 20 °C as a critical point beyond which
the minimum temperature and the risk of HFMD disease
showed a locally negative association (slope < 0) for the
value range beyond 20 °C. The study by Xu et al. [16] in
Beijing and that by Huang et al. [35] in Guangzhou also
found similar patterns. This inverse association between
HFMD and higher air temperature is unclear. We specu-
late that children are more likely to stay indoors during
the season with higher daily minimum temperatures, re-
ducing the impact from public places and crowds. In
addition, our study was conducted at the spatiotemporal
level, and the spatial difference in HFMD incidence during
the high temperature season might also be a related factor.
Due to influence of the other covariates, the multivariate
model presented a similar variation of associations with a
different threshold (about 16 °C).
Our result about the general association between wind

speed with HFMD incidence is similar to the results of
[15, 36]. In addition, such an association might locally
weakened and even inversed at high wind speed. Al-
though an increase in wind speed is beneficial to the
spread of the virus in the air through airborne droplets
[37], the virus may only be able to stay in the air for a
short period of time under a high wind speed. Outdoor
activities are also curtailed in windy weather, which re-
duces the chance of exposure to the virus.

The association between the NDVI and HFMD risk
was rarely investigated in the previous studies. Cao et al.
[8] and Stanaway [9] concluded that there was a negative
correlation between them. Studies found that urban
areas have a high risk of disease, which can be explained
by the fact that the vegetation cover is lower in urban
areas than in areas with poor economic development
and covered by mountains and cultivated land. This
study found a non-linear relationship between the two.
Compared to our study, the two abovementioned studies
were conducted on a spatial scale, thus ignoring the
changes in the NDVI over time. We believe that the
NDVI increases in the spring and summer, consistent
with the HFMD season, thus reflecting a certain upward
trend. This phenomenon is more pronounced in urban
areas where the NDVI is relatively low.
For most of the socioeconomic factors, they were sig-

nificantly positively associated with the HFMD inci-
dence. To the best of our knowledge, only a few studies
have combined socioeconomic factors with the other
factors to assess their effects on the HFMD incidence.
Bo et al. [6] found that the number of industrial enter-
prises and the proportion of students in the population
were associated with the incidence of HFMD. Huang et
al. [7] concluded that GDP had a significant impact on
the risk of HFMD incidence. Zeng et al. [38] suggested
that the increase in migratory workers from rural areas
to cities was an important risk factor for the occurrence
of HFMD. Cao et al. [8] concluded that urban areas had
a higher risk of HFMD compared with poor areas, which
is similar to our result that GDP and HFMD incidence
were positively correlated. In urban areas, the higher
population density leads to the easy spread of the virus.
A more complete health system in developed areas en-
ables the timely and detailed report of disease data to
the higher health sector, leading to a bias toward a
higher incidence. In this study, the association between
the number of hospital beds per capita and the disease
incidence also supports this claim. The results of this
study revealed that the proportion of primary school stu-
dents and the HFMD incidence showed a complex non-
linear relationship, indicating that there were many con-
founding factors affecting their association.
The traffic indicator was not selected in the multivariate

model, but the univariate analysis showed that traffic fac-
tors, as a factor of air pollution, reflected the possibility
that air pollution might lead to an increased risk of
HFMD. It is generally believed that an increase in particu-
late matter in the air makes it easier for the virus to attach
to particular matter, thus contributing to the spread of the
virus [5]. Air pollution can also reduce human immunity
and increase the risk in the exposed population [6].
Besides the physical factors, the temporal indicator

(weekly index) also played the important role. The result

Li et al. BMC Public Health  (2018) 18:274 Page 9 of 12



of scanning statistics showed much higher risk for the
highest cluster hotspot.
The spatial effect presents the spatial distribution of

the HFMD incidence rate across the study region. The
posterior spatial effect showed a general increased risk
of HFMD in the southwest part of Shandong Province,
in contrast with the decreased risk of incidence in the
central north and northeast parts of Shandong Province.
The HFMD transmission was complicated and closely
associated with the population density and communica-
tion, which presented strong spatial patterns [39].
Whereas the HFMD transmission cannot be fully cap-
tured by the covariates used, the spatial effect and clus-
ters embedded in the models could capture such a
spatial pattern (strong spatial autocorrelation), thus con-
siderably improving the model’s performance. Further-
more, the introduction of spatiotemporal scanning
statistics and spatial effects accounts for most of the
variability caused by the other factors, thus lowering the
contributions of the other factors, such as meteoro-
logical and traffic factors, in the model. The results
showed the important implications of strong spatiotem-
poral and spatial patterns for HFMD risk assessment.
To the best of our knowledge, this study is one of the

first studies to design a geo-additive model to estimate
the HFMD incidence rate. We performed a comprehen-
sive exploration of the influence of environmental, me-
teorological, land use and socioeconomic factors on the
HFMD incidence rate in terms of non-linear and spatial
effects. Our approach incorporated spatial effects as an
indicator of spatial autocorrelation and spatiotemporal
cluster output within the model. Due to strong spatio-
temporal patterns in the variation of the HFMD inci-
dence, the multivariate model achieved good estimation
accuracy (CV R2 of 0.83). Our exploration of the influ-
ence of various factors and spatiotemporal patterns has
important implications for the assessment of the HFMD
incidence, and our model provides a good estimation of
the HFMD risk, which is useful for decision-making sup-
port for HFMD zonation and warning.
This study has several limitations. First, the socioeco-

nomic factor data used in this study do not contain tem-
poral changes. However, socioeconomic factors such as
GDP and the number of students do not have significant
changes over time within one year. Therefore, the above
limitation has a very limited impact on the results. Sec-
ond, we chose the Thiessen polygon for spatial effect
modeling. The Thiessen polygon is affected by the distri-
bution of sample points. However, if more data become
subsequently available, the Thiessen polygons can be up-
dated to produce results with better spatial resolution.
Third, we chose many variables that might lead to over-
fitting in the non-linear additive model. However, the
final multivariate model selected fewer variables, strong

temporal and spatial variability explained more variation,
and cross-validation demonstrated the prediction efficacy
of this method. Fourth, the spatial effect and spatiotempo-
ral clustering of the final model explained a large portion
of the variation, and the physical meaning of other vari-
ables was ignored. However, this study already explored
the effects of individual factors on HFMD itself. In terms
of prediction accuracy, the contribution of environmental
and socioeconomic factors alone was limited. The addition
of spatial autocorrelation and spatiotemporal clustering
greatly improved the prediction performance. Under the
conditions that the influencing factors were complex and
the variability of the disease incidence could not be cap-
tured effectively, the addition of spatial autocorrelation and
spatial clustering items to the model improved the accur-
acy of risk identification, which was helpful for zoning and
warning of HFMD. Last, our model was trained using the
data for Shandong Province of China, and the model was
applied only for the assessment of the HFMD risk in Shan-
dong Province of China. However, our geo-additive ap-
proach, as an improvement of our previous approach [40],
can be easily extended to other regions and other infec-
tious diseases similar to HFMD that characterize strong
spatial autocorrelation and temporal patterns.

Conclusions
In this study, a spatiotemporal geo-additive model was de-
signed to analyze the non-linear associations between pre-
dictive factors (meteorological, socioeconomic and geo-
environmental variables) and the incidence of HFMD.
This model incorporated spatiotemporal clustering pre-
dictor and spatial autocorrelation effects to characterize
spatiotemporal patterns of HFMD incidence. The results
presented non-linear associations between the meteoro-
logical, land-use, NDVI and socioeconomic factors and
the HFMD incidence and revealed notable spatiotemporal
patterns of the distribution of the HFMD risk. Cross-
validation demonstrated the robust performance of our
approach. The results showed the implication for preven-
tion and control of HFMD, and our approach can also be
applied to other regions for risk assessment of infectious
diseases such as HFMD.
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