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Abstract

Background: The methods currently available to estimate age- and sex-specific mortality rates for sub-populations
are subject to a number of important limitations. We propose two alternative multivariable approaches: a relational
model and a Poisson model both using restricted cubic splines.

Methods: We evaluated a flexible Poisson and flexible relational model against the Elandt-Johnson approach in a
simulation study using 100 random samples of population and death counts, with different sampling proportions
and data arrangements. Estimated rates were compared to the original mortality rates using goodness-of-fit
measures and life expectancy. We further investigated an approach for determining optimal knot locations in the
Poisson model.

Results: The flexible Poisson model outperformed the flexible relational and Elandt-Johnson methods with the
smallest sample of data (1%). With the largest sample of data (20%), the flexible Poisson and flexible relational
models performed comparably, though the flexible Poisson model displayed a slight advantage. Both approaches
tended to underestimate infant mortality and thereby overestimate life expectancy at birth. The flexible Poisson
model performed much better at young ages when knots were fixed a priori. For ages 30 and above, results were
similar to the model with no fixed knots.

Conclusions: The flexible Poisson model is recommended because it derives robust and unbiased estimates for
sub-populations without making strong assumptions about age-specific mortality profiles. Fixing knots a priori in
the final model greatly improves fit at the young ages.

Keywords: Life tables, Model life tables, Mortality rates, Life expectancy, Generalised linear model, Cubic splines,
Deprivation, Small areas

Background
Life tables are sets of age-specific mortality rates for a
given population or sub-population. They are an import-
ant demographic tool for social sciences as well as many
other fields of scientific research, and are the basis for
the calculation of life expectancy. Complete life tables,
which contain estimates of the probabilities and rates of
death by single year of age and sex, also provide crucial
information for the estimation of net survival and crude
probability of death from a given disease of interest.

Complete life tables are published by sex at a national
level on a regular basis. However, such life tables are in-
complete or unavailable for many middle and low-income
countries. Furthermore, because background mortality
can vary widely, either geographically, by socio-economic
level, or by ethnicity, it is desirable to be able to produce
life tables specific to these populations in order to better
understand how mortality varies within them [1].
Since life tables for sub-populations are, by definition,

based upon smaller populations, observed mortality rates
tend to be more unstable. Moreover, both the original data
(deaths and population) and consequently the life tables
derived from them are commonly abridged, i.e. defined
for age groups (0, 1–4, 5–9 … 80–84, 85+) rather than for

* Correspondence: bernard.rachet@lshtm.ac.uk
Cancer Survival Group, Department of Non-Communicable Disease
Epidemiology, London School of Hygiene and Tropical Medicine, Keppel
street, London WC1E 7HT, UK

© 2015 Rachet et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Rachet et al. BMC Public Health  (2015) 15:1240 
DOI 10.1186/s12889-015-2534-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-015-2534-3&domain=pdf
mailto:bernard.rachet@lshtm.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


every single year of age. This is frequently due to confi-
dentiality restrictions on obtaining data for minority
groups or for small geographical areas.
Model life table methods were originally formulated to

estimate sets of mortality rates for the entire life course
(i.e. ages 0–85, 99 or above) in settings where demo-
graphic data were unavailable or unreliable [2]. They can
also be used to estimate complete (i.e. by single year of
age) sets of mortality rates from abridged data. To achieve
this end, several approaches have since been applied,
including relational [2, 3] and interpolation techniques
[4, 5], or the application of one of these standard
methods to data on the same population obtained from
different data sources [6], in order to produce reliable,
smoothed sets of mortality rates for small populations.
There are three distinct limitations common to all of

these approaches. First, for all these approaches, esti-
mates of mortality for the population of interest are
themselves derived from the proportion left alive at each
age. None of these approaches uses actual counts of
populations and deaths, which means that the variance
of the mortality rates cannot be estimated. Second each
of these methods relies heavily upon external informa-
tion about the pattern of mortality by age, either through
the requirement for a reliable standard population life
table, or through pre-specified coefficients which are
used to generate the age- and sex-specific mortality pro-
file. Although this can be deemed necessary in settings
where data quality is known to be poor, it can be limiting
in settings where the data is of reliable quality. Third, each
of these approaches is univariable, which can lead to un-
stable estimates when applied to small populations. In our
experience, these constraints lead to estimated mortality
rates which do not closely fit the observed mortality rates
in small sub-populations or in national populations with
more unusual mortality profiles [7].
We here propose and evaluate two alternative ap-

proaches to the derivation of complete life tables for
sub-populations. Both enable the joint modelling of sev-
eral covariables and are more flexible than existing
methods. One also avoids strong a priori assumptions
about the underlying shape of the population’s mortality
profile (the distribution of the deaths by age), and allows
to take fully into account the variance, since estimates
are modelled directly on observed counts of deaths and
populations. In section 2 we describe existing approaches
and present our two proposed alternative models. The
third section describes the simulation study we used to
evaluate these two methods against the best existing ap-
proach. The fourth section details an attempt to address
the issue of knot placement, encountered during the simu-
lation study. Finally we discuss the advantages and disad-
vantages of the various approaches, and make some
recommendations for further methodological work.

Methods
Our aim was to develop a more reliable and flexible
method to construct sub-population life tables than the
best methods currently available. We define sub-population
life tables as life tables specific to a variable other than age
and sex which is available at population level, for example,
geography, ethnicity or socio-economic status.

Existing approaches
Bailli et al. [8] have previously evaluated the univariable
approaches to the problem of producing smooth,
complete life tables from abridged data and for small
populations. They concluded that the Elandt-Johnson
interpolation method [4] was either equivalent or su-
perior in terms of goodness-of-fit in comparison to
Kostaki [9], Brass logit [2] and the Akima spline [5]
methodologies.
The Elandt-Johnson method derives the number of

survivors from the abridged life table using different
interpolation functions according to age. Linear
interpolation is applied only up to 75 years of age,
while the Gompertz survival distribution [10] is used
for older ages. The linear interpolation ensures that
the abridged raw values are kept for the corresponding
ages in the complete life tables. The Elandt-Johnson
method can only be applied to abridged (grouped age)
data.

Alternative approaches
Flexible relational model
We used Ewbank’s well-established model life table tech-
nique [3] as the basis of a more flexible model life table
approach. We performed a linear regression of the logit
transformation of the observed survivorship function (lx)
values over a similarly transformed survivorship function
of a reliable standard population lxsð Þ. Co-variables such
as deprivation can be included in this model. We evalu-
ated interactions between deprivation and age using re-
stricted cubic regression splines. The advantage of this
approach over the traditional Ewbank four parameter
model is that it is multivariable and also more flexible.
However, it still relies on an external standard for values
of lxs and is not based upon the raw deaths and population
data. It is possible to apply this model to both abridged
and complete data.

logit lx;i
� � ¼ f logit lxsð Þð Þ

þ
X5

i¼2

βideprivationi þ g agedepð Þ

where: x denotes age and i indexes the deprivation
category, lx,i denotes the age- and deprivation-specific
survivorship function in the observed population, lxs de-
notes the age-specific survivorship function in the

Rachet et al. BMC Public Health  (2015) 15:1240 Page 2 of 9



standard population, agedep denotes the interaction be-
tween age and deprivation, and f and g denote restricted
cubic spline functions.

Flexible Poisson model
We also defined an alternative, novel, approach in which
age-specific death counts were modelled within the gen-
eralised linear model framework, with a Poisson error, a
log link and the person-years at risk as the offset [11].
Age represents the timescale variable. Co-variables can
be incorporated in this multivariable model and interac-
tions can be fitted with restricted cubic splines. The
advantage of this approach over existing methods is that
it is multivariable, very flexible and makes use of ob-
served counts of deaths and populations at all ages from
birth to 100 years. Additionally, this approach is unique
amongst all those described because it does not make
any assumptions about the underlying shape of the mor-
tality rates by age and other co-variables. This model
can be applied to both abridged and complete data.

log dx;i
� � ¼ β0 þ f xð Þ þ

X5

i¼2

βideprivationi

þ g agedepð Þ þ log pyrsx;i
� �

where, additionally, dx,i denotes the age- and deprivation-
specific counts of death in the population and pyrsx,i de-
notes the age- and deprivation-specific number of person-
years at risk in the population.

Results
Simulation study
The simulation study was designed to evaluate whether
the flexible relational and Poisson models performed bet-
ter than the Elandt-Johnson method when producing
smooth, complete life tables for sub-national populations.

Baseline data
We obtained census-derived population counts for elect-
oral wards in England in 2001 from the Office for Na-
tional Statistics. We calculated the 2001 Townsend
index [12] for each of the 7707 electoral wards that
existed in England in 2001. The Townsend index is a
measure of deprivation, based upon four household
characteristics (unemployment, overcrowding, car own-
ership, home ownership) collected in the decennial cen-
sus. The electoral wards were then ranked by the index
and divided into five categories according to the quin-
tiles of the wards distribution ranging from least de-
prived (the 20% of wards with the lowest scores) to most
deprived (the 20% of wards with the highest scores).

Generation of mortality rates
We have previously published complete and smoothed
sex-specific life tables for England as a whole and by
deprivation [7], based on the 1991-census data and using
the conventional Ewbank model life table approach [3].
In these life tables the effect of deprivation upon the
age-specific mortality was non-proportional.
We applied these sets of age-, sex- and deprivation-

specific mortality rates to the population counts for
England in 2001 in order to obtain the number of deaths
by single year of age, sex and deprivation that would
have occurred in 2001 had these deprivation-specific
mortality rates applied.
We then drew, from these counts of populations and

deaths, 100 random samples of 20, 10 and 1% of individ-
uals, corresponding to about 1 million, 500,000 and
50,000 men or women by deprivation category, respect-
ively (Table 1). The corresponding numbers of deaths
range from around 12,000 (in 20% random samples) to
600 (1% samples).
Population and mortality data are not always available

by single year of age and/or up to 100 years of age. To re-
flect this, we then rearranged the data according to four
pre-specified scenarios; (i) abridged (grouped age) data up
to 80 (0, 1–4, 5–9, … 75–79, 80+), (ii) abridged (grouped
age) data up to 95 (0, 1–4, 5–9, … 90–94, 95+), (iii) counts
of deaths and populations by single year of age up to 80
years (with information for the age group 80+), and (iv)
counts of deaths and populations by single year of age up
to 100 years. The first of these scenarios is that with the
least detailed information, but is still the most common
scenario across the world [13–16].
We thus derived 2400 separate data sets containing age

specific counts of populations and deaths (100 simulations
for men and women x 3 sampling proportions x 4 data
rearrangements, Fig. 1). When abridged data were used,
the age value of the age group was centred a priori.

Application of the methods

Flexible relational model We fitted the flexible rela-
tional model to the observed lx values separately for each
sex. We included deprivation as a covariable. We used the
1998–2000 national life tables for England as the standard
population lxsð Þ [17]. Separate life tables for each of the
five deprivation categories were derived from the model.

Flexible Poisson model We fitted the flexible Poisson
model to counts of deaths and populations separately for
men and women. As the relationships between the death
rates, deprivation and age were likely to be non-
proportional, an interaction term between age and
deprivation was systematically incorporated in the initial
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model. All variables initially incorporated in the model, in-
cluding the interaction, were forced. The selection of the
model and the shape of the flexible functions were
assessed using the algorithm embedded in the Stata com-
mandmvrs (see Royston et al. [11] for more details), based
on the Akaike information criterion (AIC) [18]. Restricted
cubic splines are flexible polynomial functions that are
joined at locations termed ‘knots’. They are constrained to
be linear beyond the locations of the boundary knots. The
number of knots was selected a priori – 6 for age and 3
for the interaction – while their location was defined by
the model according to the percentiles of the death distri-
bution across all ages. Such numbers of knots are a good
compromise between having enough flexibility to capture
successive inflections of the age-specific mortality rate
function and limiting the risk of overfitting. The continu-
ous variable age was centred on 50.

Prediction of age- , sex- and deprivation-specific mortality
For both models, the deprivation- and age-specific death
rates for each of the five deprivation categories were dir-
ectly estimated from the sex-specific models for single
years of age between 0 and 99. The death rates for Eng-
land as a whole were derived from the weighted sum of
each deprivation-specific mortality function, the weights
being the proportion of each (age-deprivation) cell in the
observed population.

Evaluation
For all four scenarios, the life tables were evaluated
against the reference life tables. For the abridged data ar-
rangements (i) and (ii), the Elandt-Johnson method was
also evaluated (Fig. 1). The interpolation of the Elandt-
Johnson method was applied on the proportions of
survivors for each sub-population separately, i.e. by sex

Table 1 Averagea number of people and deaths in each deprivation group

Reference
population

Samples

20% 10% 1%

Population (denominator) Males 4 784 216 956 510 478 270 47 931

Females 5 042 120 1 008 268 504 385 50 646

Deaths (numerator) Males 60 840 12 065 6 070 600

Females 58 444 11 691 5 833 587
aAveraged across 100 samples

Fig. 1 Diagram illustrating the different data samples and arrangements examined in the simulation study, and which of the methods were
applied to each
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and deprivation category. The overall goodness-of-fit
was assessed with the residual sum of squares (RSS). We
also compared the value for the life expectancy at birth.
Localised goodness-of-fit was also checked, using age-
specific RSS and expectation of life (ex) at age 40 as well
as for all ages from 0 to 100.

Findings
When using the smallest sample of data and the least
detailed data arrangement, performance obtained with
the Elandt-Johnson and flexible relational approaches
was on average poorer than with the flexible Poisson ap-
proach, both overall and by age group (Table 2). Although
the overall fit of the Elandt-Johnson and flexible relational
approaches was not too divergent, estimates were consist-
ently biased and the fit was mediocre for certain groups,
in particular among the elderly (RSS over 5). This was also
reflected in the substantial over-estimation of life expect-
ancy, both at birth and at age 40, by almost 2 (Elandt-
Johnson) and 5 years (flexible relational). By contrast, on
average, life expectancy (at birth and at age 40) was over-

estimated by less than one year when based on the flexible
Poisson approach. This approach nevertheless did not
always fit the data well and over-estimated the life expect-
ancy at birth by up to 4.16 years. It was, however, much
better than results from the two other approaches which
over-estimated life expectancy at birth by over 11.65 years
(Elandt-Johnson) and 13.54 years (flexible relational).
When using the largest sample of the data and the

most detailed data arrangement, the flexible Ewbank and
the flexible Poisson approach provided fairly equivalent
results, both in terms of overall fit and partial goodness
of fit (mean and range of RSS, and life expectancy;
Table 3). The flexible Poisson approach however displayed
a slight advantage with smaller maximum RSS, overall
and also amongst the elderly. By contrast, its performance
was slightly less good for the younger ages. Both ap-
proaches tended to under-estimate the infant mortality
rate, leading to an over-estimation of life expectancy at
birth.
Figure 2 displays minimum, maximum and mean dif-

ferences in mean age-specific life expectancy in the 100
national life tables. These are derived from the weighted

Table 2 Goodness-of-fit by approach: 1% sample and abridged
data up to 80 years of age

Elandt-
Johnson

Flexible
relational

Flexible
Poisson

Residual Sum of Squaresa

All ages min 0.001 0.003 2.8E-04

mean 0.369 1.454 0.031

max 5.866 8.914 0.607

Age 0–30 min 1.7E-05 1.3E-06 1.5E-05

mean 0.001 0.011 0.001

max 0.024 6.867 0.011

Age 31-79 min 4.2E-04 3.5E-04 1.7E-04

mean 0.028 0.157 0.013

max 0.322 0.860 0.158

Age 80-99 min 3.1E-05 0.001 2.0E-05

mean 0.340 1.286 0.018

max 5.781 8.836 0.585

Difference in life expectancyb at:

Birth Min 0.001 0.040 0.001

Mean 1.839 5.383 0.790

Max 11.649 13.540 4.155

Age 40 Min 0.003 0.047 0.002

Mean 1.804 5.313 0.662

Max 11.829 13.379 3.843
aMean, minimum and maximum difference in RSS across 100 simulated sets of
deprivation-specific life tables compared to the reference tables
bMean, minimum and maximum difference in life expectation (years) across
100 simulated sets of deprivation-specific life tables compared to the
reference tables

Table 3 Goodness-of-fit by approach: 20% sample and
complete data up to 100 years of age

Flexible relational Flexible Poisson

Residual Sum of Squaresa

All ages min 0.0E + 00 0.0E + 00

mean 0.002 7.7E-05

max 0.013 0.001

Age 0–30 min 0.0E + 00 0.0E + 00

mean 5.1E-06 2.4E-05

max 1.1E-04 2.2E-04

Age 31–79 min 0.0E + 00 0.0E + 00

mean 0.002 4.2E-05

max 0.012 0.001

Age 80–99 min 0.0E + 00 0.0E + 00

mean 1.0E-04 1.1E-05

max 0.001 3.9E-04

Difference in life expectancyb at:

Birth Min 0.320 0.001

Mean 0.498 0.069

Max 0.679 0.209

Age 40 Min 0.259 2.0E-04

Mean 0.478 0.038

Max 0.650 0.154
aMean, minimum and maximum difference in RSS across 100 simulated sets of
deprivation-specific life tables compared to the reference tables
bMean, minimum and maximum difference in life expectation (years) across
100 simulated sets of deprivation-specific life tables compared to the
reference tables
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average of the 100 sets of deprivation-specific tables. It
shows that the performance of the flexible Poisson ap-
proach was consistently superior to the Elandt-Johnson
approach (abridged data) and the flexible Ewbank ap-
proach (abridged and complete data), with the smallest
and least biased errors in age-specific life expectancy.
All results for the 10% samples were very similar to

the 20% samples. We also derived results from data con-
taining a proportional effect of deprivation. The results
from these analyses were similar to those derived from
the non-proportional data.

Evaluating an alternative approach for knot location
When fitting the flexible Poisson model in the simulation
study we used a priori 6 knots for age and 3 for interac-
tions. These were placed at the percentiles of the death
distribution. We considered it likely, however that the fit
of the model for the youngest ages might be improved
based upon a priori knowledge about the pattern of mor-
tality by age, which changes rapidly and very distinctly

with age in the first 15 years of life: infant and child
mortality is known to vary substantially between sub-
populations.

Data
We obtained counts of deaths and populations in Wales
(about 3,000 000 people) by single year of age, sex and
calendar year for the period 1981–1991 from the Office
for National Statistics.

Knot placement
Since the age-specific mortality is known to change most
rapidly in the first days, weeks and years of life we fixed
three knots a priori at ages 0, 1 and 2. It is known that
inaccuracies in death and population counts arise
amongst those over 85 even in countries with high qual-
ity demographic data. We thus grouped the data over 85
years of age and a priori located a knot at the median
age of deaths in this age group. Further knots were also

Fig. 2 Differences in life expectancy estimates by sampled population and data arrangement. Mean, minimum and maximum difference in life
expectation (years) across 100 simulated sets of deprivation-specific life tables compared to the reference tables
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needed to catch the various inflexion points observed in
the mortality rate between the ages of 2 and 85. We
simulated 100 times random locations of 3, 4 and 5
additional knots between ages 3 and 50. This resulted in
three series of 100 knot patterns (with 7, 8 or 9 internal
knots, of which 4 were fixed a priori).

Modelling
We fitted models for each of the 300 patterns, separately
for men and women, including only age in the model.
The models were then ranked within each series accord-
ing to their AIC. Among the models with the best fit
(lowest AIC) and nearly equivalent (range of AICs lower
than 3), it was possible to select a single pattern of knots
which represented a common pattern amongst these
models. Calendar year was added into the final model.
We fitted an interaction between age and year a priori.
We initially chose three internal knots for year and the
interaction, located at the 25th, 50th and 75th centiles of
their distributions. An algorithm based on AIC and em-
bedded within the Stata command mvrs then selected
the most appropriate number of knots for year and the
interaction [11]. The variables were centred on age 50
and the central year in the data, 1986. The models were
then used to predict complete, smoothed life tables for
each sex and calendar year.

Findings
We briefly describe here the results for men. The final
model contained 8 knots for age (at 0, 1, 2, 14, 15, 27,
50, and 88 years) and three knots each for both year and
the interaction. Figure 3 displays the fitted mxvalues for
the raw data, the model with a priori fixed knots and
the model with no fixed knots. The fit of the model with
fixed knots was much better for the youngest ages but
similar to the one with no fixed knots for ages over 30
years. The residual sum of squares for the survivorship
curve (lx function) comparing fixed and no fixed knots
to the raw data were very small and very similar. Life ex-
pectancy at birth and at age 40 was also very similar to the
raw data values. Differences ranged up to a maximum of 6
months.

Discussion
We have shown that a flexible Poisson approach is
equivalent or slightly better than the Elandt-Johnson ap-
proach for large samples, but that it is far superior to
any other approach when estimating life tables for small
populations. The superiority of this method is due to the
fact that mortality rates are derived from actual counts
of populations and deaths, and that the model is much
more flexible. Further, we can assess the effect of several
covariables and their potential interactions, rather than
using a univariable approach. With the flexible Poisson

approach outlying results are absent or exceptional, even
where non-proportional effects are present. Where a pro-
portional effect of deprivation was simulated the overall
conclusion did not change (data available on request).
The Elandt-Johnson approach, currently recommended,

uses a set of interpolations to derive fitted mortality rates.
It displayed intermediate performance both overall and by
age. It has been suggested that its performance was high-
est for national populations over the age range 20–99
years [8]. Our study shows however that the flexible
Poisson model obtained much better results, for all ages
from birth to 100 years.
Ewbank’s traditional relational model, and our flexible

version of it, necessitates a standard population to derive
the fitted rates. Despite the use of four parameters [3]
instead of two [2], we have previously noticed a poor fit
in young (ages 10–25) and old (ages 85+) ages. The
flexibility gained with the addition of splines within a
multivariable model improved the performance of the
relational approach, but its results remain inferior to
those obtained with the flexible Poisson model. In par-
ticular, the flexible relational model had a much higher
proportion of outlying results. This is likely to be due to
the fact that the approach uses the survivorship function
rather than the actual counts of deaths and populations.
Both the Elandt-Johnson and the flexible Ewbank ap-

proach are based upon an underlying assumption about
a universal shape of the human mortality profile by age.
The use of a flexible Poisson model without fixed knots
completely removes this assumption, because the knots
for age are placed automatically according to centiles of
the distribution of deaths. This resulted in a much bet-
ter fit. Our subsequent evaluation of knot placement, in
which certain knots were fixed whilst others were per-
mitted to vary, resulted in an even better fit. Placing the
knots in this manner introduces some a priori assump-
tions about the pattern of mortality by age, but these are
minor compared with those imposed by the relational
or interpolation approaches. In the present study, fixing
some knots improved the accuracy of the estimates.
Over-parameterisation is an issue with flexible functions
such as splines and criteria other than AIC could have
been used. However, our results hardly changed when
using the Bayesian Information Criterion. Furthermore,
in order to reduce the risk of over-parameterisation, we
selected the final set of knots from among the models
with best fit based on a recurrent pattern of knots.
Further investigations could examine the placement of
the knots at the oldest ages to better estimate mortality
rates above the age of 85. The fact that a priori assump-
tions about the knot placement are not necessary but
possible with the flexible Poisson model further
strengthens the argument for its application over alter-
native approaches.
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This study was conducted in England, which has a mortal-
ity profile representative of high-income countries. However,
we have successfully used the approach to estimate life ta-
bles for 172 jurisdictions in 41 countries, spanning the five
continents Africa, Central and South America, North Amer-
ica, Asia and Europe [19, 20]. There were a few situations
where the fit was poor, in particular amongst the very young
and the elderly. Other approaches were used for these popu-
lations but further improvement was rarely obtained.
Other flexible functions could be evaluated. Multilevel

modelling could be investigated for scenarios when (one
of) the co-variable(s) is a geographic area. These ap-
proaches can be assessed by a cross-validation process.
Methodological developments have also been made within
the actuarial framework [21–24], but these are fairly com-
plex. It would be of interest to investigate their performance

on sparse, poor-quality data as found in sub-populations
and/or in low- and middle-income countries.

Conclusions
Our recommended approach is that the flexible Poisson
model should be used to model age-specific mortality
rates of small populations, rather than conventional
model life table techniques. Our approach is also more
efficient in multivariable situations. The approach
makes it possible to combine a prior understanding of
the distribution of deaths by age (by the a priori loca-
tion of certain knots for ages 0, 1, 2 and at the median
age of death for those over 85) with a variable selection
of knots (number and location) between the ages of 3
and 50, on the basis of simulations using the actual
data.

Fig. 3 Age-specific mortality rates by age band and sex: raw values, fitted values obtained with no fixed knots, fitted values obtained with fixed
knots. Knots were fixed a priori at ages 0, 1, 2 and at the median age at death over 85 years (see text)
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Modelling the rates by sex is also preferable and sim-
pler. When the data are in the abridged arrangement,
the age variable should be centred for each group. In the
case of poor quality data, the widely established Coale-
Demeny standards [25] can be applied to estimate mean
age of death for the population under 5 in abridged data.
Our results demonstrate the superiority of the flexible

Poisson approach. We have shown that an approach which
combines the flexibility of splines with a multivariable
model can achieve a much better fit to the underlying mor-
tality rates than approaches which make strong assump-
tions about the distribution of deaths by age.
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