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Abstract

Background: Multi-state models, as an extension of traditional models in survival analysis, have proved to be a
flexible framework for analysing the transitions between various states of sickness absence and work over time. In this
paper we study a cohort of work rehabilitation participants and analyse their subsequent sickness absence using
Norwegian registry data on sickness benefits. Our aim is to study how detailed individual covariate information from
questionnaires explain differences in sickness absence and work, and to use methods from causal inference to assess
the effect of interventions to reduce sickness absence. Examples of the latter are to evaluate the use of partial versus
full time sick leave and to estimate the effect of a cooperation agreement on a more inclusive working life.

Methods: Covariate adjusted transition intensities are estimated using Cox proportional hazards and Aalen additive
hazards models, while the effect of interventions are assessed using methods of inverse probability weighting and
G-computation.

Results: Results from covariate adjusted analyses show great differences in sickness absence and work for patients
with assumed high risk and low risk covariate characteristics, for example based on age, type of work, income, health
score and type of diagnosis. Causal analyses show small effects of partial versus full time sick leave and a positive
effect of having a cooperation agreement, with about 5 percent points higher probability of returning to work.

Conclusions: Detailed covariate information is important for explaining transitions between different states of
sickness absence and work, also for patient specific cohorts. Methods for causal inference can provide the needed
tools for going from covariate specific estimates to population average effects in multi-state models, and identify
causal parameters with a straightforward interpretation based on interventions.
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Background
Data on sickness benefits is a valuable source for analysing
sick leaves, disability and employment, but due to the
complexity of such data the choice of measurement type
and analysis can be challenging [1]. However, recent work
using data from Norwegian [2, 3] and Danish registries
[4–7] has proved that multi-state models [8–13] can be
a very successful framework for analysing this kind of
data. For example, when studying the effect of participat-
ing in work rehabilitation programs, events such as return
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to work, onset of sick leave benefits or work assessment
allowance can hardly be seen as single time-to-event out-
comes, but rather as a set of events which define states that
the individuals move between. Multi-state modelling, as
an extension of traditional survival analysis, offers a uni-
fied approach to the modelling of the transitions between
such states.
National registries with data on sickness benefits is a

good basis for many types of analyses. The data are typ-
ically complete, and detailed information is collected on
the type of benefits and dates when they are given. Addi-
tional information on the individuals receiving benefits is
often available or can be obtained in even greater detail
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by coupling such registry data with cohort data where
detailed information is available.
The assessment of possible interventions with the pur-

pose of reducing sickness absence is an important aim
when analysing sickness benefit data, and identifying suc-
cessful interventions could have a possible large economic
impact [14]. In this paper we will focus on two such inter-
ventions, which both have received a lot of attention. One
is the effect of partial compared to full time sick leave
benefits, see e.g. [14–17], and the other is the effect of a
cooperation agreement on a more inclusive working life,
see e.g. [18]. In the Nordic countries there have been
political initiatives for expanded use of partial sick leave.
Part-time work may be beneficial, and a feasible way to
integrate individuals with reduced work ability in work-
ing life, if the alternative is complete absence from work
[15, 17]. InNorway, an agreement onmore inclusive work-
ing life was signed by the Government and the social
partners in employers and employees’ organisations in
2001, and was renewed in 2005, 2010 and 2014. One of the
main aims of this tripartite agreement has been to reduce
the amount of individuals on sick leave and disability
pension.
Even though some attempts have been made to conduct

randomized trials to assess interventions for reducing
sick leave [19, 20], the execution of such experiments is
challenging and not very commonly seen. As for using
observational data to identify the effect of such inter-
ventions, numerous attempts have being made, see e.g.
[21–24]. There has also been a massive methodological
development over the last decades within the field of
causal inference [25–27], providing a formal framework
for identifying parameters similar to those in random-
ized trials from observational data. Suchmethods can also
be employed in a multi-state model setting, but this has
hardly been done yet.
Earlier work on multi-state models for Norwegian reg-

istry data on sick leave benefits has also been in the form
of cohort follow-up studies [2, 3], but without using the
detailed covariate information available in these cohorts.
In this paper we extend the analysis of Øyeflaten et al.
[3], analysing transitions between sick leave benefits, work
assessment allowance, disability pension and work for
patients participating in work rehabilitation programs.
Formally, we make three extensions to the analyses in
the original paper. First of all, we cover a larger multi-
center cohort, about double in size. Secondly, we utilize
the detailed covariate information which is available for
this cohort to estimate covariate specific state transition
probabilities. Doing this, both proportional hazards and
additive hazards models are here being considered for
the purpose of estimating the transition intensities. Last
but not least, we explore three different approaches based
on classical methods from the causal inference literature

to estimate the effect of interventions in multi-state
models.
The purpose of this paper is therefore twofold; to use

multi-state models to study sickness absence and work
based on detailed covariate information for a cohort of
participants after work rehabilitation, and, to illustrate
how methods from the causal inference literature can be
used to estimate the effect of interventions in such amulti-
state model framework. Detailed covariate information
is, of course, central in making covariate specific predic-
tions in a multi-state model, but even more important
when estimating the causal effects of interventions from
observational data. The statistical and causal assumptions
needed will be discussed specifically.
Covariate information has been used in multi-state

models before for predicting sick leaves and related out-
comes, in two recent papers on Danish data [4, 7]. The
main difference between the data in these studies and the
data in the present study is that the Danish data cover
a much larger cohort, while the Norwegian data include
more detailed information on the health of the partici-
pants. The latter is important for precise patient predic-
tions and for adjusting for confounding when aiming at
drawing causal conclusions. None of the earlier studies
consider the estimation of causal effects of interventions
in a multi-state setting.
With the increasing attention on multi-state modelling

of event-history data, more and more software packages
have been made available, especially in R [28]; for exam-
ple the mstate [29], msm [30] and msSurv [31] packages.
See the latter, or the books of Beyersmann et al. [32] and
Willekens [33], for detailed overviews of available R pack-
ages. The computations in this paper has been performed
in R using the surv andmstate packages and by standalone
code written by the first author.

Methods
Data sources
Amulti-center cohort
The patients being analyzed are part of a multi-center
cohort study with the purpose of studying how health
complaints, functional ability and fear avoidance beliefs
explain future disability and return-to-work for patients
participating in work rehabilitation programs. Data has
been collected on 1155 participants from eight different
clinics offering comprehensive inpatient work rehabilita-
tion. Mean time on sickness benefits during the last two
years before admittance to the work rehabilitation pro-
gram, were 10 months (SD = 6.7). All participants gave
informed consent, allowing for follow-up data on sickness
absence benefits to be obtained from national registries,
and answered comprehensive questionnaires during their
stay at the clinic. The study was approved by the Medi-
cal Ethics Committee; Region West in Norway (REK-vest
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ID 3.2007.178) and the Norwegian social science data
services (NSD, ID 16139). The data collected through
questionnaires includes various background information
together with detailed health variables such as subjective
health complaints, physical function, coping and inter-
action abilities, and fear-avoidance beliefs. See Øyeflaten
et al. [34] for more details on the cohort.

Data on sickness benefits
All Norwegian employees are entitled to sickness bene-
fits such as sick leave benefits, work assessment allowance
or disability benefits, if incapable of working due to dis-
ease or injury. The employer pays for the first 16 days of
a sick leave period, and thereafter The Norwegian Labour
and Welfare Administration (NAV) covers the disburse-
ment. Data on these benefits, both the ones covered by
the employer and NAV, was obtained from NAV’s regis-
ter, which contains information on the start and stop dates
of sickness benefits given from 1992 and onward for the
entire Norwegian population.

Data for current analysis
Out of the original 1155 participants in the multi-center
cohort study, we excluded 4 individuals with an unknown
date of departure from their rehabilitation center, 1 indi-
vidual who had not answered the relevant questions on
subjective health complaints and 5 individuals already
on disability pension at baseline, and were left with a
study sample of 1145 participants. Baseline was set to the
time of departure, which varied between May 16th 2007
and March 25th 2009. Individuals were followed up with
regard to their received sickness benefits until July 1st
2012, which was the date of data extraction from NAV.

Amulti-state model for sickness absence and work
The occurrence of an event in survival analysis can be seen
as a transition from one state to another, for example from
an alive state to a death state. The hazard rate corresponds
to the transition intensity between these two states. Multi-
state models form a flexible framework allowing for the
standard survival model to be extended by adding more
than one transition and more than two states. A detailed
introduction to multi-state models can be found in review
papers such as Hougaard [8], Commenges [9], Andersen
and Keiding [10], Putter et al. [11] and Meira-Machado
et al. [12], or the book chapter by Andersen and Pohar
Perme [13].
Sickness absence and disability data is a good example of

data that are suitable for being modelled within the multi-
state framework. Changing between work and being on
various types of sickness benefits over time can naturally
be perceived as moving between a given set of states.
In Norway, employees on partial or full sick leave can be

fully compensated through sick leave benefits for up to a

year, after which they can be entitled to work assessment
allowance. If their underlying health condition provides
reasons for it, they may be granted a disability pension
or further partial sick leave benefits. The latter is actively
recommended by the authorities [35]. Partial sick leave
can be graded from 20 to 99 %. Based on these poli-
cies we define five states that the participants can move
between after being discharged from the rehabilitation
centers: work (no received benefits), sick leave, partial sick
leave, work assessment allowance and disability pension,
and we propose the multi-state model illustrated in Fig. 1.
At baseline, when being discharged from the rehabilita-
tion center, individuals can start in any of the first four
states.
Individuals are defined as being on sick leave when

receiving full sick leave benefits, on partial sick leave
when receiving sick leave benefits graded below 100 %
and on disability pension when receiving disability pen-
sion on unlimited terms. Work assessment allowance is
a intermediate benefit typically given between sick leave
and disability pension. It is granted for individuals going
through medical treatment or rehabilitation, or to others
that might benefit from vocational rehabilitation actions.
There is an upper limit of four years for receiving work
assessment allowance. When individuals do not receive
any sickness benefits, they are per definition in work. The
only exception is when there are gaps with no benefits
before receiving disability pension – as there are no real
transitions directly from work to disability, such gaps are
attributed to the most recently received benefit. To avoid
including non-genuine transitions, benefits with a dura-
tion of only one day have been discarded. When there
were benefits registered which overlapped in time, the
newest registered benefit was used.
As for initial states; 178 patients started in the work state

(receiving no benefits) after being discharged from the
rehabilitation center, 106 were on partial sick leave bene-
fits, 496 on full sick leave benefits and 365 were on work
assessment allowance. Disability pension was defined to
be an absorbing state in themulti-state model, as few tran-
sitions were observed to go out of this state in the original
data. The total number of subsequent transitions between
the five states within the study window is shown in Table 1.
Covariate information include age at baseline, gender,

marital status, whether a cooperation agreement on a
more inclusive working life is present, educational level,
type of work, income, working ability score when enter-
ing rehabilitation and diagnosis group at baseline. All
covariates are based on information from the question-
naires, except information on type of diagnosis which is
retrieved through the ICPC code when available in NAV’s
register, and partly from the cohort data at the time of
entering the rehabilitation. The current diagnosis at any
given time is defined as the last given diagnosis. Note that
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Fig. 1Multi-state model for sickness absence and work. A model for the transitions between work (no registered benefits), sick leave benefits, partial
sick leave benefits, work assessment allowance and disability pension, for patients being discharged from clinics offering comprehensive inpatient
work rehabilitation

these selected covariates only are one out of many possi-
ble representations of the information in the original data
source, constructed to sufficiently describe the differences
between patients. Detailed statistics on the covariates are
found in Table 2.
The transition intensities for the 15 transitions in the

multi-state model from Fig. 1 were examined using the
Nelson-Aalen estimator for marginal transition intensi-
ties, and Cox proportional hazards and Aalen additive
hazards models for conditional transition intensities using
relevant covariate information. Cox and Aalen models
were fitted using either the coxph or aareg function in the
survival package [36] of the statistical software R [28]. The
Nelson-Aalen estimator was calculated by using the coxph
function without covariates.
Say that X(t) denotes the state for an individual at time

t. The transition probability matrix P(s, t), with elements
Phj(s, t) = P

(
X(t) = j | X(s) = h

)
, denoting the transi-

tion probability from state h to state j in the time interval
(s, t], was then estimated by the matrix product-integral
formula

P̂(s, t) =
∏

u∈(s,t]

(
I + dÂ(u)

)
, (1)

Table 1 Transition summary. Total number of transitions
between the five states work (state 1), partial sick leave (state 2),
sick leave (state 3), work assessment allowance (state 4) and
disability pension (state 5) based on registry data from The
Norwegian Labour and Welfare Administration (NAV) for
participants in the multi-center cohort

From: / To: 1 2 3 4 5

Work 1 0 378 2235 406 0

Partial sick leave 2 732 0 275 106 27

Sick leave 3 2397 614 0 265 66

Work assessment allowance 4 343 48 348 0 183

Disability pension 5 0 0 0 0 0

where Â(u) is the corresponding estimated cumulative
transition intensity matrix at time u [13, 29]. The cumu-
lative intensities in Â(u) are estimated using the Nelson-
Aalen estimator.
The cumulative transition intensity matrix could also

be estimated conditioning on covariates Z, changing the
formula in Eq. 1 to

P̂Z(s, t) =
∏

u∈(s,t]

(
I + dÂZ(u)

)
, (2)

where P̂Z(s, t) and ÂZ(u) are the estimated covariate spe-
cific transition probability matrix and cumulative transi-
tion intensity matrix respectively. The cumulative intensi-
ties in ÂZ(u) is estimated for given values of Z using Cox
proportional hazards models or Aalen additive hazards
models.
From the estimated transition probability matrix one

can study the probabilities of being in state j at time t
when starting in state h at baseline, P̂hj(0, t), or the overall
probability of being in state j at time t,

P̂(X(t) = j) =
∑
k

P̂kj(0, t) · P̂(
X(0) = k

)
. (3)

For models without covariates, P
(
X(0) = k

)
can be

estimated by the proportion starting in state k. With
covariates, it can be estimated using logistic regression.
With cumulative hazard estimates from the Nelson-

Aalen estimator, the formula in 1 corresponds to the
Aalen-Johansen estimator. With this marginal approach
or with covariate adjusted cumulative hazards like in
Eq. 2 estimated using Cox proportional hazards models,
estimates and confidence intervals were calculated using
the mstate package [29]. Using cumulative hazard esti-
mates from Aalen additive hazards models, the estimator
from Eq. 2 has to be implemented separately. Confidence
intervals can be calculated using bootstrap methods or
analytically as described in Aalen, Borgan and Gjessing
([37], p. 183).
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Table 2 Descriptive statistics. Description of selected covariates
collected from questionnaires to the multi-center cohort and
Norwegian Labour and Welfare Administration (NAV) data
(n=1145)

Characteristic Total number (%)
or mean (sd)

Age 45.7 (9.1)

Gender

Female 798 (70 %)

Male 347 (30 %)

Marital status

Not married 345 (30 %)

Married 716 (63 %)

Not answered 84 (7 %)

College or university education

No 743 (65 %)

Yes 309 (27 %)

Not answered 93 (8 %)

Type of work

Manual labour 222 (19 %)

Office or administration 174 (15 %)

Educational 142 (12 %)

Health and social services 247 (22 %)

Service work 165 (14 %)

Not answered 195 (17 %)

Income above NOK 300’

No 641 (56 %)

Yes 379 (33 %)

Not answered 125 (11 %)

Cooperation agreement on a more inclusive working life

No or do not know 285 (25 %)

Yes 635 (55 %)

Not answered 225 (20 %)

Working ability score when entering rehab

Score 1-3 (high to medium ability) 435 (38 %)

Score 4 438 (38 %)

Score 5 (low ability) 272 (24 %)

Diagnosis group at baseline

Musculoskeletal 682 (60 %)

Mental 232 (20 %)

Other 231 (20 %)

Note that there is an intrinsic Markov assumption [13]
in this way of multi-state modelling which can be chal-
lenging when using complex data such as data based on
sick leave and disability benefits. When the length of stay
in a state affects the intensity for leaving the state, this

assumption is in principal being violated. This is the case
in three of the states in our multi-state model due to
administrative regulations. Individuals can only be on sick
leave or partial sick leave spells of maximum one year,
and on work assessment allowance for a maximum of four
years. To what degree such violations pose a problem will
however depend on how often individuals stay in these
states long enough for the regulations to take effect, which
again partly depend on the follow-up time of the study.
In our study we have individual follow-up times ranging
between three and five year, which means that the max-
imum time of four years for work assessment allowance
not will pose a problem. In fact, the mean length of stay in
this state is 274 days (with a 95 % percentile of 1028 days).
Also sick leave and partial sick leave spells close to a year
is very rare in our study population, with a mean stay of
38 days on sick leave and 68 days on partial sick leave (and
corresponding 95 % percentils of 180 and 218 days). Over-
all, this seems to indicate that while serious violations to
the Markov assumption are possible, they are in practice
uncommon and should not make any big impacts on the
results for our study. However, in general one should be
aware that violations of this assumption may impact some
of the estimated effects, including the causal parameters
of interest.
Note also that more advance models relaxing the

Markov assumption have been developed, but the impact
of such violations will vary and could often be disregarded.
See for example Gunnes et al. [38] and Allignol et al.
[39], who only show small discrepancies between Markov
and non-Markov models in situations where the Markov
assumption is not met. When focusing on overall state
occupation probabilities as in Eq. 3, Datta and Satten [40]
have showed that the product-integral estimator in Eq. 1 is
consistent regardless of whether the Markov assumption
is being valid.

Causal inference and the effect of interventions in
multi-state models
Besides estimating transition intensities and probabilities
for a given set of states in a multi-state model and doing
individual predictions, it is also of interest to evaluate
population average effects of interventions in the multi-
state model framework. There is a fundamental difference
between merely predicting covariate specific outcomes
and to estimate the causal effect of intervention on them,
which creates a need for special methods and assump-
tions. We now consider three different approaches based
on classical methods from the causal inference literature.
The methods are exemplified with regard to the

two types of possible interventions mentioned in the
Introduction. The first intervention is the use of partial
versus full time sick leave, where partial sick leave often is
thought to cause shorter absence and higher subsequent
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employment [14]. The other intervention is the use of
cooperation agreements on more inclusive working life,
which in Norway has been implemented with the goal of
improving work environment, enhance presence at work,
prevent and reduce sick leave and prevent exclusion and
withdrawal from working life. A secondary aim is to pre-
vent withdrawal and to increase employment of people
with impaired functional ability. Participating enterprises
must systematically carry out health and safety measures,
with inclusive working life as an integral part, and will
in return receive prevention and facilitation subsidies and
have their own contact person at NAV [41]. Note that
the first of these two interventions is represented through
states in our multi-state model in Fig. 1, while the lat-
ter is represented as an additional covariate as shown in
Table 2.
As for causal assumptions we will focus on the three

general conditions which have been identified for esti-
mating average causal effects; positivity, exchangeability
(“no unmeasured confounding”) and consistency (“well-
defined interventions”) [42]. We will also discuss how the
related modularity condition, e.g. from the Pearl frame-
work of causal inference [26], is relevant in our context
of multi-state models. Additionally, as always, we need
the statistical assumptions of no model-misclassification,
which in our case is important both at an intensity and
overall multi-state level. The importance and validity of all
these assumptions are discussed separately for the three
different approaches in following sub sections.

Artificially manipulating transition intensities
One proposed method for making causal inference in
multi-state models is to artificially change certain tran-
sition intensities in Â(u) and then explore the corre-
sponding hypothetical transition probabilities [43]. Such
changes in transition intensities, creating a new transi-
tion intensity matrix which can be denoted Ã(u), may
represent interventions. The hypothetical transition prob-
abilities, which we can denote P̃(s, t), may then repre-
sent counterfactual outcomes. Confidence intervals for
such hypothetical transition probabilities can be found
through the distribution of the cumulative intensities after
manipulation. For situations without covariates and for
the additive hazards model this will follow by the argu-
ments in Aalen, Borgan andGjessing ([37], p. 123–126 and
181–190). For the Cox model it will follow by the func-
tional delta method in Andersen, Borgan, Gill & Keiding
([44], p. 512–515). For more on these types of analyses
with respect to causal inference, and especially the con-
nection to G-computation, see Keiding et al. [43] and
Aalen, Borgan and Gjessing ([37], p. 382).
The important causal assumption for this approach to

be reasonable is that when intervening on a set of tran-
sition intensities, the remaining transition intensities stay

unchanged. This is equivalent to the modularity assump-
tion and definition of a structural causal model in the Pearl
framework of causal inference [26]. See Aalen et al. [45]
and Røysland [46] for more on modularity in the light
of intensity processes. However, even when it is unrea-
sonable that such an assumption is fully met, it has been
argued that this kind of inference in multi-state models
still can give valuable insights ([47], p. 250).
In this paper we will follow the ideas from Keiding et al.

[43] for our multi-state model for sickness absence and
work in Fig. 1, and define interventions through manipu-
lating transition rates within given sets of covariate values,
where such interventions would be realistic. One example
of an intervention would be to increase the use of partial
sick leave compared to full sick leave, which would cor-
respond to modifying the intensities into the partial sick
leave and sick leave states.
For the modularity assumption to be met in this case,

it means that the additional individuals counterfactually
put on partial sick leave instead of full sick leave, should
behave identical to those individuals who were observed
on partial sick leave in the original data. As those on par-
tial sick leave generally are in a better health state than
those on full sick leave, this is not a reasonable assump-
tion. However, it is reasonable within similar stratums
of covariate levels, which we will study in later in this
paper. Satisfying the condition of modularity in this man-
ner, also will imply that the assumptions of positivity,
exchangeability and consistency are met.

Inverse probability weighting
Another approach from the causal inference literature
is inverse probability of treatment (or propensity score)
weighting [48, 49]. The treatment or exposure of inter-
est can be represented either as states in the multi-state
model or through additional covariates. One could for
example weight by the inverse probability of being in a
given state at baseline, before estimating the transition
intensities of themodel in Fig. 1. This would correspond to
modelling a counterfactual scenario where there is a copy
of each individual in every possible initial state.
The sufficient conditions for this approach to be valid

is again the causal assumptions of positivity, exchange-
ability and consistency. Positivity here means that there
should be a non-zero probability of receiving all possi-
ble exposures for all covariate values in the population.
Also, the model for the exposure, which is the foun-
dation for the weights, must be well specified. See for
example [42, 48, 49] for a further discussion on these
assumptions.
Say that we would like to compare the effect of being

put on sick leave versus partial sick leave at baseline (when
being discharged from the rehabilitation center). Let us
for now only consider those starting in either of these two
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states. Whether an individual is put on full or partial sick
leave at baseline is hardly randomized. We could how-
ever model the counterfactual situation where everyone,
regardless of their covariate information, were put on full
sick leave at baseline and an identical copy of each indi-
vidual were placed on part time sick leave. This can be
achieved by applying the weights

wk = 1
P(Sk = sk|Zk = zk)

,

where Sk is the initial state and Zk is all the relevant
covariate information explaining the initial state for indi-
vidual k. The probabilities of being in either of the two
states at baseline can be estimated using ordinary logis-
tic regression. The uncertainty of the estimates from the
resulting weighted multi-state analysis can easily be cal-
culated using for example the coxph function in R with
robust standard errors [50].
Another casual contrast of interest would be to compare

the scenario where everyone got a cooperation agreement
on a more inclusive working life with a scenario where
no-one had such an agreement. This would correspond
to modelling a situation where such agreements were
randomized. This could be modelled by weighting every
individual in the original data with the inverse probability
of having a cooperation agreement on a more including
working life given covariates, by applying the weights

wk = 1
P(Ek = ek|Zk = zk)

,

where Ek is an indicator variable that is 1 if an agreement
is present and 0 otherwise. The probabilities can again be
estimated using logistic regression.
Assuming positivity for the first type of intervention

means that there should be a probability greater than zero
for starting in either of the two states of sick leave or
partial sick leave at baseline, regardless of any observed
covariate history. This is testable, and the covariates in
Table 2 are well balanced over the two groups. The biggest
difference lies in the distribution of the working ability
score, but even in the partial sick leave group 5 % of
the individuals has a low ability score (the lowest health
score). As for exchangeability it is a question of whether
the included covariates sufficiently explain the differences
between those on full and partial sick leave at base-
line. The covariates include demographic, socioeconomic,
work and health variables, which should be the central
parameters. However, to what degree they are sufficiently
covered is untestable. The health variable should ideally
had been collected at baseline, and not at the first mea-
surement after entering the rehab, but one could hope
that in combination with type of work and diagnosis
group, it will still be sufficient. An example of a vari-
able that was considered, but not included, is the center

that the patients attended. Adding this information, which
involves adding 7 new dummy variables, seemed to have
little impact. We therefore assume that center specific dif-
ferences between patients are covered sufficiently through
the other covariates, and especially working ability score
and diagnosis group. For the cooperation agreement inter-
vention, this is not administered at an individual level, and
thus the assumptions are even easier to assess. There are
no covariate combinations that exclude such agreements
and the most important confounder will be type of work.
Both interventions can also be assumed well-specified.

G-computation
A third approach, which corresponds to G-computation
[51–53] (or standardization) of the parameter from the
inverse probability weighting, is to estimate the transi-
tion intensities for individual k conditioned on all relevant
covariate information Zk using a Cox proportional haz-
ards or an Aalen additive hazards model, and then pre-
dict the state transition probabilities given covariates Z,
Phj(s, t | Z), for every individual given a specific interven-
tion. As for the inverse probability weighting approach,
the intervention could be defined both through setting a
specific initial state or a covariate to a specific value.
The main causal assumptions are again positivity,

exchangeability and consistency, together with the
assumption of no model misspecification. However, the
model which needs to be correctly specified is now
the model for the outcome, and not a model for the
exposure as for the inverse probability approach. See for
example [52] for a discussion on the causal assumptions
of G-computation. For a general discussion on the use of
inverse probability weighting and G-computation, and the
connection to standardisation, see [53].
If, again, we would like to compare the effect of being

put on sick leave versus partial sick leave at baseline, the
intervention would correspond to setting their initial state
to h = 2 and h = 3, and compare all individual predictions
for both values. The population average effect can then be
estimated through

1
n

∑
k

P̂3,j(0, t | Zk) − 1
n

∑
k

P̂2,j(0, t | Zk),

where n is the number of individuals in the study. Con-
fidence intervals can be found using standard bootstrap
techniques.
Correspondingly, if we consider an intervention such as

the cooperation agreement on a more inclusive working
life, represented by a binary covariate Ek , the population
average effect of such an intervention can be estimate by

1
n

∑
k

P̂i,j
(
0, t | ZEk=1

k

)
− 1

n
∑
k

P̂i,j
(
0, t | ZEk=0

k

)
, (4)

for given initial states i.
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As these interventions are the same as the ones in
question for the inverse probability approach, the causal
assumptions need are also identical. See the discussion
of these assumptions in the previous sub section.

Results
Unadjusted analysis
Unadjusted cumulative intensities for the 15 transitions in
themulti-statemodel in Fig. 1 estimated using theNelson-
Aalen estimator are found in Fig. 2. We see how the
magnitude of the estimated transition intensities varies
between states, and that transitions from sick leave to
work has the highest intensity. Note that estimated inten-
sities will correspond to the slopes of the cumulative
estimates in this figure.
The estimated time-varying transition probabilities,

found by Eq. 1, give rise to the stacked probability plots
in Fig. 3, given the four possible initial states (work, sick
leave, partial sick leave and work assessment allowance).
For example, we see that an individual who is on sick leave
at time 0, has an unadjusted probability of approximately
0.50 of having returned to work after three years. The
unadjusted probability of being disabled after the same
period is approximately 0.10.
Overall state occupation probabilities calculated

according to (3) are shown in Fig. 4. We see that, for
example, overall there is a rapid increase in work after

being discharged from the rehabilitation center, from just
below 20 % to just below 50 % after the first year. The
general tendencies in this figure are similar to the ones in
the paper by Øyeflaten et al. [3], who do an unadjusted
analysis on a subset of the patients included in the current
analysis. Note that in the remainder of this paper we
focus on state transition probability plots, but that similar
plots of the state occupation probabilities also can be
derived.

Covariate adjusted analysis and individual predictions
Adjusting for the covariates age, gender, marital sta-
tus, higher education, type of work, income, cooperation
agreement on a more inclusive working life, work ability
score and baseline diagnosis when estimating the tran-
sition hazards, allows for covariate specific predictions
of the state transition probabilities. Figure 5 shows two
examples of such predictions, for a married female aged
30 in an educational job, with an agreement on inclusive
working life, income above NOK 300 000, higher educa-
tion, working ability score 4 and mental diagnosis, and
a single male aged 60 in a manual job, no agreement on
inclusive working life, income below NOK 300 000, no
higher education, work ability score 4 and musculoskele-
tal diagnosis. Note that when fitting the models, from
the original covariates described in Table 2, those who
did not answer the questions on marital status, higher

Fig. 2 Nelson-Aalen estimates of unadjusted cumulative transition intensities for the 15 transitions in the multi-state model. The five states in the
model is work (Work), sick leave benefits (SickL), partial sick leave benefits (ParSL), work assessment allowance (WorkAsAl) and disability pension
(Disab)
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Fig. 3 Unadjusted state transition probabilities. Predictions given the patients state at baseline (time of discharge from the work rehabilitation center)
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Fig. 4 State occupation probabilities. The overall probability of being
in the five states over time, estimated using Eq. 3

education or having an inclusive working life agreement
were put in the “no” category. We see that the esti-
mated state transition probabilities for the two sets of
covariates clearly differ with respect to work. The prob-
ability of returning to work within the follow-up time is
almost 0.80 for females with the given example of covari-
ates, while only about 0.10–0.15 for males in the second
example.
Note that the stacked probability plots in Figs. 3 and 5

do not include confidence intervals. In Fig. 6 we explore
these by showing the probability of having returned to
work from state 4 (work assessment allowance) at any
time, with corresponding confidence intervals, for the two
scenarios in Fig. 5. We see that the probability of return-
ing to work after being on work assessment allowance is
very different for individuals with the two different sets of
covariates, also when accounting for the uncertainty of the
estimates.
The results using a Cox proportional hazards model

were also compared with an Aalen additive hazards model
for modelling the transition intensities in our multi-state
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Fig. 5 Covariate adjusted state transition probabilities with work assessment allowance as the initial state; predictions given two selected sets of
covariates. Left panel: Married female aged 30 in an educational job, with a cooperation agreement on a more inclusive working life, income above
NOK 300 000, higher education, working ability score 4 and mental diagnosis. Right panel: Single male aged 60 in a manual job, no cooperation
agreement on a more inclusive working life, income below NOK 300 000, no higher education, work ability score 4 and musculoskeletal diagnosis

model. Even in simple additive models where constant
hazards were assumed, we saw a good agreement between
additive and proportional hazards models. See the next
sub section for a further comparison between these two
types of hazard models.

The effect of hypothetical interventions
Let us now consider results from the three proposed
methods for doing causal inference in our multi-state
model. For assessing hypothetical interventions on the use
of full and partial sick leave benefits in the multi-state
model in Fig. 1, let us first look at a scenario where we
artificially manipulate the transition intensities that go
into the partial sick leave and sick leave states. Figure 7

show the state transition probabilities for an individual
starting in the work state at baseline. The left panel show
the estimated probabilities given the original multi-state
model, while the right panel show a counterfactual sce-
nario where all transitions into full sick leave are blocked
and routed into partial sick leave. This manipulation of the
multi-state model corresponds to removing the possibil-
ity of full time sick leave, and instead putting individuals
on partial sick leave. For such a manipulation to be rea-
sonable, this should be done within a set of covariate char-
acteristics where this intervention is realistic. The figure
shows results for married males aged 45 in an educational
job, income below NOK 300 000, no higher education,
working capacity score 1 and a musculoskeletal diagnosis.
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Fig. 6 The probability of being in state 1 (work) after starting in state 4 (work assessment allowance) for two covariate specific predictions. Left panel:
Married female aged 30 in a educational job, with a cooperation agreement on an inclusive working life, income above NOK 300 000, higher
education, working ability score 4 and mental diagnosis. Right panel: Single male aged 60 in a manual job, no agreement on a more inclusive
working life, income below NOK 300 000, no higher education, work ability score 4 and musculoskeletal diagnosis
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Fig. 7 Results intervening on sick leave intensities. Comparing predicted (left panel) and counterfactual (right panel) state transition probabilities for
a selected set of covariates: Married male aged 45 in a service job, with no agreement on a more inclusive working life, income below NOK 300 000,
no higher education, with a high to medium working ability score and musculoskeletal diagnosis. In the counterfactual scenario all transitions into
sick leave have been blocked and routed into partial sick leave

From Fig. 7, we see that the state transition probabilities
are similar for the two scenarios, but that individuals
tend to quit full time work more frequently when full
time sick leave is not available. The use of part time sick
leave benefits is of course higher, but the use of work
assessment allowance and disability pension is actually
lower.
Let us then consider the inverse probability weighting

approach and first the hypothetical intervention of plac-
ing all individuals on either full or part time sick leave at
baseline. To assess such an intervention we focus only on
the individuals in partial or full sick leave at baseline and
give them a weight corresponding to the inverse proba-
bility of starting in their initial state. Then we estimate
all transition intensities of the multi-state model in Fig. 1
and calculate their state transition probabilities as func-
tions of time. This will correspond to comparing partial
and full sick leave as if it was randomized at baseline. State
transition probabilities for these two scenarios are shown
in Fig. 8. Note that when intervening on initial states in
a model that is Markov, like we do here, the differences
between the two interventions will be smaller and smaller
with time. When comparing partial and full sick leave, the
difference is mostly visible during the first year. To give a
more detailed picture of this difference, the time axis in
Fig. 8 has been restricted to go from 0 to 365 days. Prob-
abilities of starting in a given initial state were calculated
using logistic regression, adjusting for the covariates in
Table 2. We see that there is a tendency that partial sick
leave yields a faster return to work than full time sick leave,
and to a certain degree replace the use of work assessment
allowance, but the differences are small.
Another intervention in question was the cooperation

agreement on a more inclusive working life. The effect

of this agreement could be assessed by weighting with
the inverse probability of having an agreement and then
look at the transition probabilities for the weighted sub-
sets of the original data for those without and with an
agreement. This corresponds to modelling two counter-
factual scenarios; one where no-one has such an agree-
ment and another where everyone has one. The results
from such a comparison is shown in Fig. 9. Probabili-
ties of having an agreement were calculated using logis-
tic regression, adjusting for the covariates in Table 2.
We see that there is a small but positive effect of hav-
ing an agreement on a more inclusive working life with
respect to having a higher probability of returning to
work.
Finally, if we consider the G-computation approach, we

can again estimate the effect of having an agreement on
a more inclusive working life by estimating state transi-
tion probabilities for every individual when the indicator
variable for such an agreement first is fixed to 0 and
then 1, and look at average predictions for all individu-
als. The average predictions can be seen in Fig. 10, from
using a Cox model in the upper panels and from an
Aalen additive model in the lower panels. The two haz-
ard models give very similar results. The smooth curves
for the additive models is due to the assumption of con-
stant hazard rates, which simplifies the model fitting. Left
panels show overall state transition probabilities without
an agreement and the right panels show overall transi-
tion probabilities with an agreement. We again see a small
but positive effect of having such an agreement. We also
see that the results are very similar to the results when
using the inverse probability weighting approach in Fig. 9.
As described earlier, a similar analysis can be done with
regards to starting in partial or full time sick leave at
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Fig. 8 Inverse probability weighting results for full versus partial sick leave. State transition probabilities for the counterfactual scenarios where
everyone originally on full or partial sick leave were given full sick leave (left panel) or partial sick leave (right panel). Note that time axis is restricted to
the first year, to highlight the differences between these two scenarios

baseline. Again, results (not shown) are similar to the
ones estimated using inverse probability weights (shown
in Fig. 8).
An alternative way to illustrate the effect of the inclusive

working life agreement is to plot the difference in state
transition probabilities, for instance of returning to the
work state from work assessment allowance. Ninety-five
percent confidence intervals for such effects can be found
using bootstrap techniques. Note however that such a
bootstrap can be computationally heavy, for example in
the G-computation approach when averaging over all
individual predictions. A possible shortcut is however to
make one prediction for average covariate levels together
with the manipulated covariate. Formally, this can be jus-
tified for additive hazards models, but in our applications

we found that it also gave a good approximation with Cox
models. Results from such an analysis can be found in
Fig. 11, using Cox proportional hazards models to esti-
mate the causal effect in Eq. 4, and the latter bootstrap
approach for confidence intervals. We see that, after the
first year, there is a rather constant positive effect of hav-
ing a cooperation agreement on a more inclusive working
life, with about 5 percent points higher probability of
entering the work state. However, the uncertainty is rel-
atively high, with a 95 % bootstrap confidence interval
ranging from about 1 percent to 10 percent.

Discussion
One of the important goals of sickness absence research is
to find effective interventions for controlling it. Registry
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Fig. 9 Inverse probability weighting results for the effect of having a cooperation agreement. State transition probabilities for the counterfactual
scenarios no-one has a cooperation agreement on a more inclusive working life (left panel) and the scenario where everyone has such an
agreement (right panel)
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Fig. 10 G-computation results for the effect having a cooperation agreement. State transition probabilities for the counterfactual scenarios no-one
has a cooperation agreement on a more inclusive working life (left panels) and the scenario where everyone has such an agreement (right panels),
estimated using the G-computation approach with Cox proportional hazards models (upper panels) and Aalen additive hazards models (lower panels)

data on sickness benefits is a primary source for mak-
ing such inference, and multi-state models have proved to
be a very successful framework for modelling the transi-
tions between different benefits and work in such data.
Coupling registry data with detailed information about
cohort participants, gives further insights about underly-
ing reasons for sickness absence and can predict patient
specific probabilities of future sickness absence, disabil-
ity and returning to work. Combining these methods with
standard methods from causal inference is a first attempt
to then answer questions of the effect of interventions.
In this paper we have considered examples of two such
possible interventions; namely the use of partial sick leave
and cooperation agreements for a more inclusive working
life.
Covariate specific predictions show great differences in

the probabilities for sick leave, disability and work for
patients with assumed high risk and low risk covariate
characteristics. Overall, we find small effects of partial
sick leave compared to full sick leave on state transition

probabilities. Note however that in terms of expenses,
partial sick leave benefits are less costly than giving full
sick leave benefits, and thus, no difference in outcome
between the two would indicate that partial sick leave
should be preferred when possible. For cooperation agree-
ments on a more including working life we find more
visible, but still rather small, effects. Again, in terms of
overall expenses, the effects of having such agreements
must be considered against the cost of implementing
them.
When it comes to graphically representing the outcome

in multi-state models there are many possibilities, and
we have only looked at some of them. Stacked probabil-
ity plots are illustrative, of either state transition or state
occupation probabilities, while non-stacked plots make
it easier to include confidence intervals. When assess-
ing the effect of interventions one can plot the difference
in these probabilities, as we have done, or alternatively
the ratio between state transition or occupation probabili-
ties. Another possible outcome measure could be to study
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Fig. 11 Effect of having a cooperation agreement. Difference in
probability of returning to work for the two counterfactual scenarios
where no-one has an agreement on more inclusive working life and
the scenario where everyone has such an agreement, estimated
using the G-computation approach. Ninety-five percent bootstrap
confidence intervals are presented around the effect

the area under each curve, which will correspond to the
expected time spent in each state during follow-up.
Methodologically, the graphical features of the multi-

state model framework makes it very suitable for thinking
in terms of causal inference. Both in terms of the intuitive-
ness of defining interventions in terms of manipulating
transition intensities, but also in terms of interpreting
the outcomes of interventions using state transition and
occupation probabilities. We also find that standard
approaches from the causal inference literature, such as
inverse probability weighting and G-computation, can
help identify causal parameters easily interpreted also in
a multi-state model setting. The methods applied in this
paper are kept rather simple, partly for illustrative pur-
poses, but can also easily be extended to estimate effects
of time-varying exposures or interventions and to com-
pare treatment regimes. One should however expect that
this makes both standard model assumptions and causal
assumptions harder to meet.
For themodelling of transition intensities it is reassuring

that the Cox proportional hazards models and Aalen addi-
tive hazards models gave similar results. The two models
have different advantages in the setting of this paper. The
Cox model is easier to implement using existing soft-
ware, while the additive model needs more model fitting
assessment, for example in deciding how to smooth the
estimated cumulative hazards to get well behaved hazard

estimates. In this paper we could assume constant inten-
sities for the additive hazards models which simplifies
the model fitting. When doing individual predictions, the
additive models are not ideal, as they can give probability
estimates below 0 or above 1 for uncommon combina-
tions of covariates. A major benefit of the additive hazards
model however, is that because of their additive struc-
ture, predicting with average covariate values is a shortcut
to the individual predictions used in the G-computation
approach. Apart from the standard model assessments
when fitting separate hazard models for each transition,
the most important statistical assumption to consider is of
course the Markov assumption for the overall multi-state
model, which was discussed in the Methods section.
As for causal assumptions, it is clear that with the

complexity of multi-state models, causal interpretation
should not be made naively. To interpret all the sepa-
rate transition intensity models and the overall multi-
state model causally is challenging. To what degree such
causal assumptions are needed will however depend on
the approach used to define the intervention of interest.
When intervening on transition intensities, the structural
assumption of the full model will be key, while when
intervening on treatment indicator variables, such as in
the approach referred to as G-computation, the causal
interpretation of the coefficient for this variable, in each
separate hazard model, will be of particular importance.
The goal of this paper, in terms of causal inference, is

to illustrate how standard approaches can be used in a
multi-state model setting to answer questions about the
effect of interventions. When it comes to formal argu-
ments for the validity of these approaches there is room
for more work, especially on the sensitivity of the Markov
assumption and how deviation will affect the validity of
the causal assumptions. Overall, we believe that there are
many benefits from thinking in terms of causal inference
for multi-state models, as research questions often boil
down to questions on the effect of interventions. It is
also worth noticing that many of these approaches have
been used at some level in multi-state models also histor-
ically. In particular, this goes for manipulating transition
intensities and fixing covariate values, which in this paper
was put in a G-computation context. However, few formal
connections have yet been made to the causal inference
field.

Conclusions
Detailed covariate information is important for explaining
transitions between different states of sickness absence
and work in a multi-state model, also for patient spe-
cific cohorts. Methods from the causal inference literature
can provide the needed tools for going from covari-
ate specific estimates to population average effects in in
such models, and thus yield new insights when assessing
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hypothetical interventions from complex observational
data.
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