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Abstract
Background  The objective of this study was to detect the urinary levels of chlorpyrifos, paraquat, and cyproconazole 
in residents living in Fuyang City and to analyze the correlation between these urinary pesticides levels and the 
severity of fatty liver disease (FLD).

Methods  All participants’ fat fraction (FF) values were recorded by MRI (Magnetic resonance imaging). First-
morning urine samples were collected from 53 participants from Fuyang Peoples’Hospital. The levels of three urinary 
pesticides were measured using β-glucuronidase hydrolysis followed by a. The results were analyzed by using Pearson 
correlation analysis and binary logistic regression analysis to reveal the correlation between three urinary pesticides 
and the severity of fatty liver.

Results  53 individuals were divided into 3 groups based on the results from MRI, with 20 cases in the normal 
control group, 16 cases in the mild fatty liver group, and 17 cases in the moderate and severe fatty liver group. 
Urinary chlorpyrifos level was increased along with the increase of the severity of fatty liver. Urinary paraquat 
level was significantly higher both in the low-grade fatty liver group and moderate & serve grade fatty liver group 
compared with the control group. No significant differences in urinary cyproconazole levels were observed among 
the three groups. Furthermore, urinary chlorpyrifos and paraquat levels were positively correlated with FF value. And 
chlorpyrifos was the risk factor that may be involved in the development of FLD and Receiver Operating Characteristic 
curve (ROC curve) analysis showed that chlorpyrifos and paraquat may serve as potential predictors of FLD.

Conclusion  The present findings indicate urinary chlorpyrifos and paraquat were positively correlated with the 
severity of fatty liver. Moreover, urinary chlorpyrifos and paraquat have the potential to be considered as the 
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Background
Environmental chemicals, such as pesticides, have 
become a growing concern for human health because 
several health issues common non-communication dis-
eases, including obesity and type 2 diabetes are attributed 
to these pesticides [1, 2]. Humans are more and more 
exposed to pesticides through food intake, accidental or 
occupational exposure during farming, contacting live-
stock treated with insecticides, and contaminated drink-
ing water [3]. Despite the excessive use of pesticides is 
reduced, over 4  billion pounds of pesticides have been 
used on crops annually worldwide [4]. In China, the 
overuse of pesticides and the toxic residues of pesticides 
left in water pose great health risks to families in cer-
tain areas [5, 6]. A huge body of evidence exists on the 
possible role of pesticide exposures in the elevated inci-
dence of human diseases such as cancers [7], Alzheimer 
[8], Parkinson [9], asthma [10], bronchitis [11], infertil-
ity [12], birth defects [13], autism [14], diabetes [15], 
and obesity [16]. Thus, understanding the relationship 
between chronic exposure to pesticides and human dis-
eases becomes necessary.

Fatty liver is generally divided into alcoholic fatty liver 
diseases, non-alcoholic fatty liver diseases and metabolic 
dysfunction-associated fatty liver disease [17–19]. And 
The incidence of FLD increased in recent years [20]. With 
the rapid development of medical imaging such as ultra-
sound, computed tomography, or MRI, the understand-
ing of fatty infiltration of the liver is becoming more and 
more objective [21]. However, these imaging examina-
tions still presented some disadvantages including opera-
tor-dependent and subjective [22], slight lack of accuracy 
and risks of radiation exposure [23]. Moreover, they also 
tend to be costly and time consuming. Beyond that, in 
the era of life-omics, huge amounts of multi-omics data 
have been generated and widely used in diagnosis of FLD 
[24] such as radiomics analysis [25], proteomics [26], gly-
comics [27], lipidomics [28], metabolomics [29]. How-
ever, characteristics of exposomes which could reflect the 
impact of environmental pollution have not been studied. 
Therefore, combining exposomes and medical imaging 
diagnosis would provide a potential noninvasive, time-
saving, and relatively simple tool to diagnosis of FLD.

As the largest solid organ, the liver serves as a pivotal 
role in metabolism including lipid and glucose metabo-
lism as well as detoxication in the human body [30]. It 
reported that insecticides are easily deposited in the 
liver and adipose tissue which led to further long-term 
exposure to insecticides [31]. Chlorpyrifos is one of the 

predominantly used pesticides to kill mosquitoes, borers, 
cotton aphids, and pink bollworms which were likely to 
damage crops like wheat, rice, and cotton [32]. However, 
the massive use of chlorpyrifos affects soil fertility, modi-
fies soil microbial community structure, and poses poten-
tial health risks to non-target organisms. Chlorpyrifos 
mainly causes inhibition of acetylcholinesterase enzyme 
and damages the nervous system of humans as well as 
the immune system, endocrine disruption, and embry-
onic disorders [33–35]. It was also reported that chlor-
pyrifos inhibits diet-induced thermogenesis in brown 
adipose tissue and this important factor contributing to 
the development of obesity and insulin resistance [36]. 
Paraquat is a cheap and effective herbicide widely used 
worldwide to remove weeds in vegetables, fruits, and cul-
tivated crop fields [37]. Like with chlorpyrifos, paraquat 
can also cause soil and water pollution, and pose serious 
harm to the environment and organisms. Accidental or 
intentional ingestion of paraquat led to multiorgan fail-
ure through spreading to the lung, liver, kidney, thyroid 
gland and muscle through blood circulation is responsi-
ble for the death of paraquat poisoning [38]. Cyprocon-
azole, developed in 1987, is a kind of triazole fungicide 
with the effect of anti-bacteria and plant growth regu-
lators. It is typically applied as foliar sprays to restrain 
diseases by inhibiting fungal steroid demethylation [39]. 
Due to stability and solubility in water, cyproconazole 
piles up in the water and then causes harm to the human 
body [40]. Maternal exposure to certain triazole antifun-
gal medication causes congenital malformations, includ-
ing skeletal malformations. It was reported that exposure 
to cyproconazole induces adipogenesis while repressing 
skeletal development based on whole-embryo transcrip-
tomics [41]. However, there are no published reports 
about the relationship between the accumulation of these 
three commonly used pesticides and FLD progression. 
Thus, exploring the relationship with the progress of FLD 
by detecting the concentration of these three pesticides 
in the human body could provide new ideas for the treat-
ment and diagnosis of FLD.

Fuyang, neighboring Henan Province and located in 
the northwest of the Anhui Province, is a city that mainly 
developed on the primary industry (agriculture, forestry, 
animal husbandry, and fishery). Therefore, it is unques-
tionable that pesticide was under extensive use and resi-
dents are easily subject to environmental exposure to 
pesticide residues. Thus, effective and precise detection 
of pesticide accumulations in the bodies of residents 

predictors for development of FLD. Thus, this study may provide a new perspective from the environmental factors for 
the diagnosis, prevention, and treatment of FLD.
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may also provide important suggestions for health 
management.

In this study, we detected three common pesticides 
(chlorpyrifos, paraquat, and cyproconazole) in the urine 
based on LC-MS. Therefore, the objective of the present 
study was to provide baseline information on the levels of 
chlorpyrifos, paraquat, and cyproconazole in urine sam-
ples from residents living in Fuyang City and to assess 
the correlation between the level of pesticides exposure 
and the severity of FLD. More importantly, this study will 
provide a new reference direction for the diagnosis, pre-
vention, and treatment of FLD as well as providing sug-
gestions for environmental protection policies.

Methods
Study design and participants
All procedures, including sampling and examination, 
were conducted in accordance with the principles out-
lined in the Declaration of Helsinki and its subsequent 
revisions. A total of 53 participants from Fuyang peoples’ 
hospital were analyzed. All participants’ FF values were 
recorded by MRI fat quantitative examination (FF < 5% 
represented the normal group, 5 ≤ FF ≤ 14% represented 
mild fatty liver, and FF ≥ 14% represented moderate and 
severe fatty liver) [42]. The urinary level of chlorpyrifos, 
paraquat, and cyproconazole was measured by a high-
performance liquid chromatography-tandem mass spec-
trometry-based method.

Inclusion and exclusion criteria
Participants who had been diagnosed with fatty liver dis-
ease by MRI fat quantitative examination were recruited 
and individuals were excluded if: (a) A history of alcohol 
consumption, hepatitis, cirrhosis, or liver cancer; (b) A 
history of abdominal surgery; (c) Have taken drugs that 
affect blood lipid and blood sugar in the past six months; 
(d) Participants who are with genetic metabolic diseases 
or cardiovascular diseases; (e) Participants who could not 
complete MRI because of claustrophobia; (f ) Poor image 
quality.

Imaging detection of FLD
Philips Ingenia CX 3.0T magnetic resonance scanner was 
adopted with mDIXON-Quant scanning sequence and 
8-channel abdominal special coil. Patients were asked 
to inhale, exhale and hold their breath during scanning. 
The imaging parameters were as follows: repetition time 
msec/echo time msec, 5.8/1.01, the field of view(FOV): 
400  mm×350  mm×210  mm, voxel: 2.5  mm x 2.5  mm x 
6  mm, NSA: 1, layer number 70. FF was obtained after 
scanning. The region of interest (ROI) was plotted on the 
right anterior lobe, right posterior lobe, and left lobe of 
the liver at the level of portal vein display on the post-
processing workstation, respectively. The average values 

of the three were taken to represent the final liver FF 
value, and the ROI area was set to 200 mm².

Sample collection and processing
Morning urine samples (second portion) were collected 
using plastic Vacuette® Urine Collection Cups (Greiner 
Bio-One International AG, Austria). Urine samples were 
filtered through a membrane filter of 0.22 μm. Using ace-
tic acid-sodium acetate buffer (0.5  M) to adjust the pH 
of respective mixtures to 5.4. β-glucuronidase/arylsulfase 
(10 µL), and vitamin C (5 mg) were added and incubated 
overnight at room temperature to complete the enzy-
matic hydrolysis. Urine samples after enzymatic hydroly-
sis were extracted by solid-phase extraction with an SPE 
column (C18 ENVIJI 0.25  g) and then eluted with 2mL 
methanol and dried with nitrogen. Finally, 100 µL metha-
nol was re-dissolved as the analyte to be determined. 50 
µL of the analyte was tested by transferring it to a liquid 
chromatography bottle with a micro syringe, which was 
especially used for the injection analysis. Evaluation of 
chlorpyrifos, paraquat, and cyproconazole levels in the 
urine of participants was performed using LC-MS. The 
1  µg/mL standard working solutions of chlorpyrifos, 
paraquat, and cyproconazole were prepared with metha-
nol as solvent. The final standard working solution was 
100 pg/mL after continuous dilution of 104 times. Take 
chlorpyrifos as an example, different concentrations of 
chlorpyrifos standard working solution were prepared. 
50µL of each chlorpyrifos standard working solution 
was transferred to a liquid chromatography bottle with a 
micro syringe, which was specially used to inject chlorpy-
rifos standard samples. Urinary TCPy level was detected 
to reflect the level of chlorpyrifos. Urinary paraquat and 
cyproconazole level were directly detected.

Statistical analysis
One-way analysis of variance (ANOVA) was used to ana-
lyze differences among the different diagnostic groups 
concerning demographic information, physical examina-
tion indicators, and the urinary level of three pesticides. 
Bonferroni multiple comparison tests were used in the 
posttest. The association between the urinary level of 
three pesticides and the development of FLD was ana-
lyzed by using Pearson correlation. Risk factors for the 
development of FLD were analyzed by binary logis-
tic regression. Receiver operating characteristic (ROC) 
curves were used to assess the diagnostic strength of uri-
nary pesticides. A difference with P < 0.05 was considered 
statistically significant. All data were analyzed with R ver-
sion 4.0.2.
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Results
Study design and FF value determination
A total of 53 urine samples collected from enrolled indi-
viduals were detected by LC-MS method described. 
Besides, we divided them into 3 groups (control group, 
low-grade fatty liver group, and moderate&serve grade 
fatty liver group) according to the FF value (%) referring 
to the previous description, so there were 20 cases in 
the normal control group, 16 cases in the mild fatty liver 
group, and 17 cases in the moderate and severe fatty liver 
groups (Fig. 1).

General data of enrolled individuals
The general data of enrolled individuals are demonstrated 
in Table 1. In total, 53 individuals including 31 males and 
22 females were enrolled, aged 25–73 years, with an aver-
age age of 42.30 ± 12.05 years.

Urinary concentration of chlorpyrifos, paraquat, and 
cyproconazole
The urinary level of chlorpyrifos, paraquat, and cypro-
conazole was measured among different groups by a 
high-performance liquid chromatography-tandem mass 
spectrometry-based method. The results indicated that 
the urinary chlorpyrifos level increased as the severity of 

Fig. 1  The schematic diagram of urinary pesticides detection and liver FF measurement
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fatty liver increased (Fig. 2A). And the urinary paraquat 
level was significantly increased in the low-grade fatty 
liver group and the moderate & serve grade fatty liver 
group compared with the control group but there was no 
significant difference between the low-grade fatty liver 
group and the moderate & serve grade fatty liver group 
(Fig. 2B). In addition, no significant differences in urinary 
cyproconazole levels were observed among the three 
groups (Fig. 2C).

Chlorpyrifos and paraquat were positively correlated with 
FF value
To gain insights into the association between urinary 
chlorpyrifos, paraquat, and cyproconazole level and the 
severity of fatty liver, we performed a correlation analy-
sis. We found that urinary chlorpyrifos and paraquat 
levels were significantly and positively correlated with 

FF value (r = 0.5603, P < 0.0001, r = 0.03667, P = 0.0066, 
respectively) (Fig.  3A&B). But urinary cyproconazole 
level showed no correlation with FF value (r = 0.0008, 
P = 0.9954) (Fig. 3C).

Binary logistic regression analysis
Table  2 presents the risk factors for the development 
of FLD using binary logistic regression analysis. It was 
shown that chlorpyrifos was the risk factor that may be 
involved in the development of FLD. However, here it 
should be pointed out that even though paraquat could 
serve as a risk factor according to the regression analysis, 
we thought that this phenomenon was due to the signifi-
cant degree of differentiation in urinary paraquat level. 
The results indicated that daily intakes and abnormal 
accumulation of chlorpyrifos may ultimately lead to FLD.

Table 1  Demographic characteristics of enrolled individuals
Control (n = 20) Low grade fatty liver (n = 16) Moderate&Serve grade fatty liver (n = 17) F value P value

Male 9 10 13
Female 11 6 4
Age 43.80 ± 12.14 42.06 ± 13.18 40.76 ± 11.32 0.288 0.751
BMI 24.73 ± 3.33 28.13 ± 2.34 29.51 ± 1.51 17.178 < 0.001
Smoking 2/20 4/16 6/17
Sedentary 7/20 12/16 14/17
Urinary
creatinine
(mmol/L)

68.92 ± 20.16 68.56 ± 16.28 68.71 ± 11.21 0.002 0.998

TC (mmol/L)) 4.94 ± 1.04 5.02 ± 0.67 5.21 ± 0.63 0.488 0.617
ALT(U/L) 22.00 ± 7.04 33.87 ± 15.17 40.06 ± 25.88 3.541 0.038
AST(U/L) 20.00 ± 3.00 20.87 ± 6.82 25.71 ± 8.66 3.194 0.051
GGT(U/L) 26.40 ± 20.90 41.18 ± 46.78 64.94 ± 50.97 4.156 0.021
ALP(U/L) 68.47 ± 19.95 74.18 ± 18.58 74.41 ± 30.76 0.380 0.686
TBA(µmol/L) 4.01 ± 2.61 4.30 ± 2.07 5.72 ± 4.33 1.509 0.231
TBIL(µmol/L) 11.08 ± 4.25 13.21 ± 7.28 11.79 ± 3.87 0.743 0.481
DBIL(µmol/L) 3.41 ± 1.44 3.81 ± 1.37 3.20 ± 0.88 0.959 0.390
IBIL(µmol/L) 7.88 ± 3.17 9.45 ± 6.14 8.54 ± 3.30 0.593 0.556
Note Statistical methods: One Way ANOVA. TC: Total cholesterol; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; GGT: Glutamyl transpeptidase; ALP: 
Alkaline phosphatase; TBA:total bile acid; TBIL:Total bilirubin; DBIL:Direct Bilirubin; IBIL: Indirect Bilirubin

Fig. 2  Urinary levels of chlorpyrifos, paraquat and cyproconazole. (A) Urinary concentration of chlorpyrifos; (B) Urinary concentration of paraquat; (C) 
Urinary concentration of cyproconazole
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Chlorpyrifos and paraquat could serve as independent 
predictors of FLD
We further determined the sensitivity and specificity of 
urinary chlorpyrifos, paraquat, and cyproconazole levels 
for the diagnosis of FLD by receiver operating character-
istic (ROC) curve analysis. The cut-off value was set at 
the point whose distance from the (sensitivity, specificity) 
= [1] reached the minimum. The AUC of chlorpyrifos, 
paraquat, and chlorpyrifos levels for FLD was 0.924,0.832 
and 0.517 (Fig. 4) respectively which indicated that chlor-
pyrifos and paraquat may serve as potential predictors of 
FLD.

Discussion
Long-term exposure to pesticides could cause dangerous 
effects on the skin, endocrine system, nervous system, 
and many other systems of the human body [43]. There-
fore, regular monitoring of pesticide residues in human 

body can effectively prevent the occurrence of such dis-
eases. Compared with serum and plasma, urine could 
better reflect the changes in human metabolism of pes-
ticides because of the higher urinary metabolite concen-
tration [44]. In our previous study, we had evaluated the 
urinary levels of dimethoate, bisphenol A, and benzo[a]
pyrene and provided those baseline levels in healthy 
adults [45].

In this study, we evaluated the levels of 3 common-used 
pesticides in China and analyzed the correlation between 
these three pesticides with severity of FLD. we found 
that the urinary levels of chlorpyrifos and paraquat were 
higher in the people with FLD and were significantly ele-
vated as the severity of FLD increased. As is well known, 
excessive fat deposition in hepatocytes, a hallmark of 
steatosis, is frequently associated with FLD [46, 47] 
and it was also reported that environmental pollutants 
tended to accumulate in liver and caused liver damage 

Table 2  Binary logistic regression analysis
β Wald P value OR (adjusted)* 95%C.I.

lower Upper
Chlorpyrifos 1.732 10.96 0.001 5.65 2.027 15.75
Paraquat 9.209 9.816 0.002 9984.64 31.436 3171285.3
Cyproconazole 0.807 0.433 0.511 2.241 0.202 24.821
Note *Adjusted by age and gender

Fig. 4  Receiver operating characteristic curve analysis of the three Eds. (A) A ROC curve and AUC values showing the discriminating capacities of chlor-
pyrifos; (B) A ROC curve and AUC values showing the discriminating capacities of paraquat; (C) A ROC curve and AUC values showing the discriminating 
capacities of cyproconazole

 

Fig. 3  The association between three urinary pollutants levels and the severity of fatty liver. (A) The association between urinary chlorpyrifos level and 
FF%; (B) The association between urinary paraquat level and FF%; (C) The association between urinary cyproconazole level and FF%
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[31]. Therefore, this explains the abnormal higher lev-
els of chlorpyrifos and paraquat in the people with FLD. 
Besides, these results coincided with the results from our 
previous study [45] that the accumulation level of envi-
ronmental pollutants was higher in people with high BMI 
compared with people with low BMI.

Excessive accumulation of pesticides in hepatocytes 
certainly could affect basal hepatocyte functions and 
might contribute to the development of FLD. Therefore, 
we analyze the relationships between FLD and accumu-
lation level of pesticides. And we found urinary chlorpy-
rifos and paraquat levels were significantly and positively 
correlated with severity of FLD. Additionally, although 
we did not find a significant correlation between urinary 
cyproconazole level and FLD, it was reported that accu-
mulation of cyproconazole could also produce liver tox-
icity and cause hepatocellular adenomas and carcinomas 
in rodents [48, 49]. Thus, the impact of cyproconazole on 
FLD could not be neglected.

Our results also indicated that chlorpyrifos was a risk 
factor for FLD and it was correlated with previous study 
[36] that chlorpyrifos inhibits diet-induced thermogen-
esis in BAT and this important factor contributing to the 
development of obesity and insulin resistance. However, 
because of the high degree of discrimination of urinary 
paraquat level, paraquat cannot be considered a definite 
risk factor for FLD. To further explore whether urinary 
pesticides level can predict FLD and then provide a basis 
for the development of new diagnostic kits for clinical 
practice, ROC analysis was performed. Unexpectedly, 
the AUC of chlorpyrifos was 0.924 which indicated that 
chlorpyrifos might serve as independent predictors of 
FLD.

As mentioned before, the accumulation level of envi-
ronmental pollutants in the body detecting by exposomes 
could dynamically reflect health status. Although it rep-
resents a cross-sectional study, our study innovatively 
combines the exposomes and medical imaging diagno-
sis. MRI has certain advantages in terms of diagnosing 
FLD and also combined with other omics. However, the 
dynamic change and convenient detection provide by 
exposomes would better lead to insights of health. The 
higher accumulation level of chlorpyrifos and other envi-
ronmental pollutants in people with high BMI definitely 
will undoubtedly increase their awareness of health and 
will encourage them to reduce their exposure to related 
toxins. Then it would kill two birds with one stone which 
reducing the level of environmental pollutants and allevi-
ating the severity of the associated disease.

Overall, this is the first investigation of urinary chlor-
pyrifos, paraquat, and cyproconazole levels in people 
with FLD. Urinary levels of chlorpyrifos and paraquat 
were increased in the people with FLD and were posi-
tively correlated with the severity of FLD. Moreover, the 

development of diagnosis kits targeting urinary pesti-
cides could provide new ideas for the diagnosis and pre-
vention of FLD. However, the size of samples included 
is not enough, so the results of this paper have certain 
limitations. It is necessary to further expand the sample 
size in the follow-up studies and subgroup analysis is also 
needed to explore the relationship between urinary pes-
ticides level and FLD. Beyond that, in the future work, 
we also need to add the validation part to further prove 
the efficiency of targeted detection for environmental 
chemicals.

Conclusion
The present findings indicate urinary chlorpyrifos and 
paraquat were positively correlated with the severity of 
fatty liver. Moreover, urinary chlorpyrifos and paraquat 
have the potential to be considered as the predictors for 
development of FLD. Thus, this study may provide a new 
perspective from the environmental factors for the diag-
nosis, prevention, and treatment of FLD.
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